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Abstract

This chapter promotes the adoption of process mining methods, techniques, and tools
for analyzing, monitoring, and forecasting healthcare processes and their outcomes. By
taking the process-oriented view of the data stored and managed by information systems
of healthcare organizations, process mining can support self-regulation and evidence-based
practices of health professionals, teams, and institutions. The chapter reviews healthcare
processes and data amenable to process mining analysis, discusses the prominent use cases
and challenges of process mining in healthcare, and provides recommendations for the
evolution of the process mining discipline to address the needs of the healthcare domain.
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1 Introduction
Healthcare aims to improve the health of individuals and communities and to reduce
the burden of diseases and disabilities (Buchbinder, Shanks, & Kite, 2019). To achieve
this goal, healthcare institutions engage in self-regulation and evidence-based prac-
tices. Self-regulation involves monitoring, evaluating, and reflecting on one’s behav-
iors and processes to systematically identify and address biases and limitations, thus
improving the outcomes (Knapp, Gottlieb, & Handelsman, 2017). Evidence-based
practices support clinical decisions based on available evidence rather than intuition or
beliefs (Li, Jeffs, Barwick, & Stevens, 2018). Such practices support continuous learn-
ing, allowing healthcare professionals to adapt rapidly to changing health demands and
new technologies and treatment methods.

Effective implementation of self-regulation and evidence-based practices in health-
care relies on analyzing relevant data from historical observations of the activities per-
formed by stakeholders and events triggered by health equipment and technology. A
health information system is a data storage and tool for analysis of the data of a health-
care organization, for example, a hospital or a network of healthcare institutions (Win-
ter et al., 2010). The data from such a system can be analyzed using conventional
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statistics, causal inference, machine learning and data mining techniques (Consoli, Re-
cupero, & Petković, 2019), and more recently process mining (Mans, van der Aalst, &
Vanwersch, 2015; Rojas, Munoz-Gama, Sepúlveda, & Capurro, 2016).

The research discipline of process mining studies methods, techniques, and tools
that use data recorded by information systems that support operational processes of
organizations aiming to understand and analyze past and current and to forecast and
improve future real-world processes and their outcomes (van der Aalst, 2016). In-
sights produced by process mining approaches have delivered value in many domains,
including retail, manufacturing, telecom, and healthcare (Reinkemeyer, 2020). Spe-
cific to healthcare, by taking the process-oriented view of the historical healthcare data
managed by health information systems, process mining enables several dedicated use
cases for monitoring, evaluating, and improving healthcare processes, thus support-
ing self-regulation and evidence-based practices (Rovani, Maggi, de Leoni, & van der
Aalst, 2015).

Based on existing literature, this chapter provides a comprehensive review of health-
care processes and data types amenable to process mining analysis and use cases and
exemplar applications of process mining analysis over healthcare data. In addition, it
compiles the challenges and limitations of state-of-the-art process mining techniques in
the healthcare context and provides recommendations for the process mining discipline
aiming to address them.

The next section presents the process mining discipline. Section 3 discusses pro-
cesses supported and data managed by health information systems that can be the focus
of process mining studies. Then, Section 4 presents process mining use cases in health-
care and demonstrates exemplary process mining analytics. Section 5 discusses the
challenges and limitations of state-of-the-art process mining for healthcare and gives
recommendations for addressing them. Finally, Section 6 concludes the chapter.

2 Process Mining
Process mining combines studies of inferences from data in data mining and machine
learning with process modeling and analysis. Process mining tackles, among other
problems, the discovery, monitoring, and improvement of real-world processes. The
context of three main process mining types, discovery, conformance, and enhancement,
as proposed by van der Aalst (2016), is shown in Fig. 1. Process mining aims to
understand how a real-world process has performed historically, is performing now, and
will perform in the future, and to recommend how the future process can be improved.

A process mining study starts with an event log, a special format of data recorded by
software systems, e.g., enterprise resource planning or customer relation management
systems, that support organizations’ business processes. An event log is a collection of
traces, where each trace is a sequence of events that relate to the same case, e.g., an
identifier of a patient admitted to a hospital, ordered by timestamps at which software
systems recorded them. An event usually represents a transaction or a message and,
in addition to the case and timestamp attributes, has the activity attribute that captures
the nature of the process step, e.g., a transaction storing customer details or a message
requesting additional information from a business partner. The three standard event at-

2



“world”: business 

processes, people, 

machines, components, 

organizations

software system

event logs(process) model

supports/controls

models

analyzes

specifies

configures

implements

analyzes

records

events, e.g.,

messages,

transactions,

etc.

discovery

conformance

enhancement

Figure 1: The context of process mining (van der Aalst, 2016).

Table 1: Ten events of a trace that capture a pathway of a sepsis patient

No. Timestamp Activity Group Age CRP L.Ac. Leuk.
1 7 Oct 2014 07:24:16 ER Registration A 70
2 7 Oct 2014 07:28:59 ER Triage C
3 7 Oct 2014 07:29:18 ER Sepsis Triage A
4 7 Oct 2014 07:30:33 IV Liquid A
5 7 Oct 2014 07:30:36 IV Antibiotics A
6 7 Oct 2014 07:49:00 CRP B 205.0
7 7 Oct 2014 07:49:00 LacticAcid B 3.4
8 7 Oct 2014 07:49:00 Leukocytes B 11.1
9 7 Oct 2014 09:56:09 Admission NC Q
10 9 Oct 2014 13:00:00 Release B E

tributes are often extended by further payload attributes, like resources used or involved
in the execution of the activity that triggered the event.

Table 1 lists ten events constituting a single trace that describes a pathway of a
sepsis patient through a Dutch hospital (Mannhardt & Blinde, 2017). Columns in the
table encode event attributes, while rows specify the events. As all the events belong
to the same case, the case attributed is omitted in the table. In addition to the stan-
dard attributes, events have payload attributes of an organization group in which the
event originated, values of the patient’s age and diagnostic measurements of C-reactive
protein (CRP), and the levels of lactic acid and leukocytes in the blood.

Given an event log of multiple historical traces and possibly a process model, e.g.,
records of historical pathways of all sepsis patients in a hospital from a certain period
and a normative description of which steps such patients should follow, the three main
types of process mining address these problems:

• Given an event log, the discovery problem consists of constructing a process model
that describes all the traces the process that generated the log can produce.
• Given an event log and a process model, the conformance problem studies how faith-

fully the model describes the process that generated the log.
• Given an event log and a process model, the enhancement problem studies ways to

improve the accuracy of the model with respect to the process that generated the log.
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A process model is a conceptual model that describes sequences of activities the
system can generate. In process mining, several notations are used for capturing pro-
cess models, but most commonly, Petri nets, business process modeling and notation,
and event-driven process chains. Commercial process mining tools predominantly use
directly-follows graphs (DFGs) for representing process models. Process models that
follow the declarative modeling paradigm are also used in process mining and the
healthcare applications of process mining (Rovani et al., 2015).

3 Healthcare Processes and Data
This section reviews common types of processes present in healthcare settings, refer to
Section 3.1, presents different data types these processes generate and software systems
that manage these data types, see Section 3.2, and, in Section 3.3, discusses considera-
tions relevant to preparing healthcare data for process mining analysis.

3.1 Processes
Healthcare processes are broadly classified into medical treatment processes (MTP)
that comprise treatment steps of patients and organizational processes (OP) that coor-
dinate health practitioners and resources (Lenz & Reichert, 2007). Guzzo, Rullo, and
Vocaturo (2021) specialize these core process types into seven subtypes listed below.

P1 Clinical pathways (MTP) capture interactions of patients with healthcare providers,
for instance, to communicate symptoms and perform medical exams or surgeries.

P2 Patient pathways (MTP&OP) constitute steps patients follow in healthcare facil-
ities, such as registration, diagnosis, and hospitalization.

P3 Patient behavior (MTP) is composed of activities performed over a patient’s body,
for example, temperature and blood pressure measurements.

P4 Personnel interactions (OP) comprise messages and information exchanges be-
tween hospital staff and departments.

P5 Medical processes (MTP) specify activities of medical procedures, for instance,
therapies and surgeries.

P6 Human movements (OP) are sequences of patients’ or medical staff’s locations in
healthcare facilities.

P7 Personnel tasks (OP) are composed of activities performed by medical staff, in-
cluding interactions with information systems.

Patients, doctors, and practitioners can be further involved in the processes listed be-
low (Lenz & Reichert, 2007; Mans et al., 2015), which we also attribute to the medical
treatment and organizational process types.

P8 Administrative processes (OP) handle activities related to admission, discharge,
scheduling, and billing of patients.

P9 Clinical trials (MTP&OP) are studies that involve human participants that aim
to advance medical knowledge and improve patient care.
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P10 Decision-making processes (MTP) govern the principles for implementing com-
plex medical decisions and ethical dilemmas.

P11 Education processes (MTP&OP) aim to ensure medical staffmeet existing qual-
ifications and educate patients to engage in their healthcare management.

P12 Facility management processes (OP) address the management of infrastructure,
facility, and equipment maintenance.

P13 Financial processes (OP) regulate budget planning and financial management.
P14 Information management processes (OP) manage data entry, data privacy, and

data security within healthcare organizations.
P15 Medication management processes (MTP&OP) govern activities of prescrib-

ing, administering, and managing medications and pharmaceuticals.
P16 Patient flow processes (MTP&OP) aim to improve the flow of patients through

healthcare departments and settings.
P17 Regulatory compliance processes (OP) ensure the maintenance of legal and

regulatory compliance of various activities within healthcare facilities.
P18 Supply processes (OP) support the procurement of equipment and pharmaceuti-

cals for implementing effective and efficient health care.

All the discussed process types can be the focus of process mining studies to improve
the efficiency and effectiveness of organizational processes and clinical outcomes of
medical treatment processes to promote job satisfaction of healthcare practitioners and
the health of the population.

3.2 Data
The data generated by the healthcare processes is managed by dedicated software sys-
tems and is often stored in database management systems. The most common classes of
software systems used in healthcare environments, including those discussed by Guzzo
et al. (2021), are summarized below.

D1 Hospital management system (HMS) supports clinical (P1) and patient (P2) path-
ways, personnel interactions (P4) and tasks (P7), and administrative (P8) and finan-
cial (P13) processes within a healthcare institution. An HMS can include functional-
ity for managing medications (P15) and inventory (P18), provides clinical decision
support (P10), and supports reporting and adherence to regulatory compliance (P17).
HMSs are actively involved in the management of medical processes (P5), including
scheduling of medical procedures and allocation of resources to and documentation
of these procedures. Finally, HMSs may include modules for supporting education
processes for both medical staff and patients (P11). They may include features for
scheduling training and management of medical licenses and qualifications.

D2 Electronic medical record (EMR) is a digital version of a medical history and in-
formation of a patient and, thus, stores data managed by clinical (P1) and patient (P2)
pathways, medication management processes (P15), clinical decision management
processes (P10), and clinical research and trials (P9). EMRs are also involved in
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the management of medical processes (P5). For example, they are used to prioritize
medical procedures for patients and store their results.

D3 Electronic health record (EHR) system extends the functionality of EMR by
managing information on healthcare practitioners involved in the diagnosis and treat-
ment of patients (P4, P7, and P10) and medical billing and insurance management
(P13), and staff involved in the patient’s care. It can also share information with
other healthcare facilities.

D4 Real Time Location System (RTLS) identifies and tracks the real-time location
of people, resources, and further assets to monitor the location and safety of patients
(P2, P3, and P6), patient flow (P16), staff movements (P6), interactions (P4), tasks
(P7), and equipment utilization (P12).

D5 Picture Archiving and Communication System (PACS) manages access to med-
ical images, for instance, X-rays, Computed Tomography (CT) and Magnetic Res-
onance Imaging (MRI) scans, and, thus, supports decision-making processes (P10),
personnel tasks (P7), clinical trials (P9), and information management (P14).

D6 Body-sensor data, for example, data generated by electrocardiogram, temperature,
and respiratory rate sensors, that describes physiological parameters and health met-
rics of patients supports patient pathways (P2) and behavior processes (P3), clinical
trials (P9), and facilitates decision making (P10).

The data managed by all the discussed systems can be used for process mining analysis
of the corresponding processes.

3.3 Considerations
Several standards have been proposed to systematize how event logs are stored and
exchanged. The existing commercial and open-source tools that implement process
mining techniques often rely on these standards to ensure data compatibility.

The first version of the IEEE eXtensible Event Stream (XES) standard was initiated
in 2010 and officially published on November 11, 2016 (XES Standard, 2016). This
standard includes an XML schema that captures the structure of an XES event log or an
event stream and an XML schema describing the structure of a log or stream extension.

The process mining community regularly publishes industrial event logs in the XES
format, including logs from the healthcare domain. A Dutch Academic Hospital event
log contains 150 291 events distributed over 1 143 traces, each capturing one case of
diagnosing and treating a patient of a gynecology department.1 Another publicly avail-
able event log contains 15 214 events from 1 050 cases, each representing a pathway of
a sepsis patient through a hospital (Mannhardt & Blinde, 2017).2 The latter event log
is also presented and discussed in Section 2.

Recently, the process mining community introduced an XES successor, the Object-
Centric Event Log (OCEL) standard (Ghahfarokhi, Park, Berti, & van der Aalst, 2021).
In object-centric event data, the notion of a case of an event is replaced with a group of

1https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
2https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
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objects the event is associated with (van der Aalst, 2023). This shift in process scop-
ing appears particularly interesting for the healthcare domain, as it supports flexible
analysis of event data based on different equipment and healthcare team configura-
tions (Senderovich et al., 2015). While most existing process mining tools work with
XES logs, it is expected that, with time, more tools will adopt OCEL as the underlying
standard for exchanging event data.

4 Use Cases and Exemplars
Process mining techniques support many use cases and applications in healthcare (Mans
et al., 2015). Most frequently, process mining is used to perform process discovery and
conformance analysis. Further applications include concept drift detection, predictive
analysis, and simulation (Guzzo et al., 2021). Next, we discuss and exemplify the use
of process discovery, refer to Section 4.1, and conformance analysis, see Section 4.2,
based on the example event log of sepsis patients pathways.

4.1 Discovery
Figures 2a and 2b show two directly-follows graphs (DFGs) discovered from the event
log of 1 050 pathways of sepsis patients introduced in Section 2 using the Directly
Follows visual Miner process discovery algorithm (Leemans, Poppe, & Wynn, 2019).
A DFG is a special type of process model. A directed path in a DFG that starts in
its source node, the only node without incoming arcs, and ends in the sink node, the
only node without outgoing arcs, describes a possible sequence of activities that can
be executed within a single process case. A DFG discovered from a given event log
aims to describe the process cases that can be supported by the process, including the
historical process executions recorded in the log the DFG was constructed from and
the executions that can be observed in the future executions of the process.

The graph in Fig. 2a was constructed to ensure it describes precisely at least 10%
of the traces in the input event log. In turn, the DFG in Fig. 2b was constructed to
guarantee to represent precisely at least 25% of the process executions recorded in the
event log. The numbers on nodes of DFGs represent the historical frequencies of ex-
ecuting the corresponding activities, while the numbers on arcs describe the historical
frequencies of executing the connected activities one after the other. In the figures, the
source nodes and sink nodes use green and red backgrounds, respectively, while all
other nodes and arcs are blue. The thickness of the arcs and the darkness of the nodes
emphasize the corresponding frequencies.

The more of the distinct executions from the event log the discovered model rep-
resents precisely, the more complex it gets. It is often the task of the process analyst
to identify a range of settings of the process discovery algorithm that result in the con-
struction of simple models that faithfully describe the process that generated the log.

Process models discovered from historical executions of different types of pro-
cesses discussed in Section 3.1 can be used to understand how they are performed in
the real world based on the evidence recorded in the event logs. For example, based on
the models in Fig. 2, one can conclude that the CRP and white blood cell (leukocytes)
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Figure 2: Two directly-follows graphs discovered from historical pathways of sepsis
patients at a hospital.

levels are monitored regularly at various stages of handling sepsis patients and always
precede the discharge of a patient (the end of the process). Domain experts can use the
process knowledge captured in the models to identify bottlenecks in the process and
possibilities for improving it. Process discovery was reported as a key component in
many case studies in healthcare, including the reduction of surgery times and risks of
individual surgical manipulations (Blum, Padoy, Feußner, & Navab, 2008), supporting
operations of active transhumeral prostheses (Su et al., 2023), and monitoring care pro-
cesses in an oncology department (Caron et al., 2014). For a comprehensive review of
process discovery applications in healthcare, refer to the work by Guzzo et al. (2021).

4.2 Conformance
Conformance techniques can be used to study deviations of historical process execu-
tions and the designed executions captured in models. Mannhardt and Blinde (2017)
apply conformance techniques to demonstrate that the historical pathways of sepsis
patients often deviate from the patient flow as specified by the process stakeholders.

To perform such analysis, one can compute optimal alignments (Adriansyah, van
Dongen, & van der Aalst, 2011) between the evidence, historical process executions
recorded in an event log, and the expectations, process executions supported by a de-
signed model of the corresponding process. Figure 3 shows optimal alignments be-
tween two historical pathways of sepsis patients and the DFG from Fig. 2b. The align-
ment in Fig. 3a places the trace from Table 1 into the context of an execution described
in the DFG. Each chevron arrow represents a move in the alignment, either an event
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Figure 3: Optimal alignments between two historical pathways of sepsis patients and
the DFG in Fig. 2b.

from the trace in Table 1 or an activity from the DFG. A chevron arrow with a light
background represents a synchronous move, an event from the trace matched by an
activity in the model. A chevron arrow with a dark background represents an asyn-
chronous move, that is, an event that is not matched by an activity or an activity that is
not matched by an event. The alignment in Fig. 3a has four asynchronous moves. All
these are trace moves, denoted by the corresponding labels above the chevron arrows.
A trace move signifies a trace event not matched by a model activity. The alignment in
Fig. 3b has four asynchronous moves, three trace moves and one model move, denoted
by the corresponding label below the chevron arrow. A model move signifies that a
model activity is not matched by a trace event.

The optimal alignments in Fig. 3 are computed to contain minimal deviations be-
tween the trace and the model. In general, several optimal alignments between a trace
and a model can exist with the same number, or cost, of asynchronous moves. Optimal
alignments can be used to construct analytics that help to understand the differences
between processes as they are executed in the real world and designed to be executed.
These insights can be used, for instance, to enforce future real-world process execu-
tions to follow the guidelines prescribed in the model or to redesign the process model
to incorporate best practices from historical real-world process executions (Fahland &
van der Aalst, 2015; Polyvyanyy, van der Aalst, ter Hofstede, & Wynn, 2017).

Conformance analysis is used in healthcare, for instance, to assess deviations of
care pathways from clinical guidelines (Caron et al., 2014; Kelleher, Jagadeesh Chan-
dra Bose, Waterhouse, Carter, & Burd, 2014; Mannhardt & Blinde, 2017), confor-
mance of medical treatment processes (Kirchner, Herzberg, Rogge-Solti, & Weske,
2013), and analysis of patients with similar treatment procedures (Dewandono, Fauzan,
Sarno, & Sidiq, 2013). Again, for a comprehensive review of conformance applications
in healthcare, refer to the work by Guzzo et al. (2021).

5 Discussion
This section discusses the challenges and limitations of process mining, see Section 5.1
and Section 5.2, respectively, and provides recommendations for advancing process
mining in the healthcare domain, refer to Section 5.3.
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5.1 Challenges
The general challenges of process mining, for example, dealing with complex event
logs and creating representative benchmarks, were discussed by van der Aalst et al.
(2012), whereas challenges specific to the healthcare domain were introduced by Mar-
tin et al. (2020) and Munoz-Gama et al. (2022). Next, we introduce challenges specific
to process mining for healthcare that reuse some but also go significantly beyond the
challenges discussed in the mentioned works. They were identified in the works on the
use of process mining and the broader process analytics studies in the context of the
healthcare domain. Addressing these challenges requires a multidisciplinary approach,
including experts in process mining, healthcare, legal, and ethics.

C1 Event data quality. Healthcare data is often incomplete or inconsistent due to
errors in handwritten or electronic health records, leading to challenges in obtaining
accurate analysis results.

C2 Event data privacy and security. Healthcare data is highly sensitive and is sub-
ject to strict privacy and security regulations in many countries, posing significant
challenges in sharing and analyzing healthcare data.

C3 Event data scarcity. Healthcare data can be imbalanced as specific outcomes
of rare health conditions or diseases may manifest in very few positive or negative
outcomes, leading to additional challenges for distinguishing such conditions from
noise and drawing statistically significant conclusions based on them.

C4 Clinical data heterogeneity. Clinical data is highly heterogeneous due to patient
demographics and genetic differences, making it challenging to identify common
trends and underlying principles underpinning the data.

C5 Event data heterogeneity. Healthcare data comes in multiple types, including cat-
egorical, numerical, ordinal, geospatial, time series, and image data types, each with
dedicated characteristics making it difficult to implement its homogeneous analysis.

C6 Longitudinal event data. Collected by monitoring the health of patients over
extended time, healthcare data is often longitudinal, requiring special approaches
for handling irregular measurement intervals, missing values, and attrition bias.

C7 Event data integration. Healthcare data is stored in different formats managed
by multiple software systems, refer to Section 3.2 for details, and integrating these
fragmented data sources poses significant practical challenges.

C8 Event data management compliance. Due to its high sensitivity, handling health-
care data is often governed by complex legal frameworks requiring non-trivial com-
pliance with data handling protocols.

C9 Ethical considerations. Healthcare data is subject to ethical considerations to
avoid unfair treatment of patient cohorts due to biases of analysis algorithms.

C10 Explainability considerations. To ensure the wide adoption of healthcare data
analysis techniques, their results must be explainable and, thus, trustworthy to health-
care practitioners and patients. However, it is well known that the higher the quality
of automated data analysis results, the harder it is to ensure the underlying principles
can be communicated to humans.

C11 Domain knowledge. Healthcare data interpretation often requires specialized do-
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main knowledge by dedicated healthcare practitioners, and it is challenging to access
them due to their scarcity and busy work schedules.

C12 Patient-centered analysis. Healthcare data often needs to be analyzed to obtain
insights about the health and needs of a concrete patient, making it challenging to
generalize the analysis principles across multiple patients.

C13 Multi-perspective analysis. Healthcare data must often be analyzed from multiple
perspectives to understand the important data patterns and obtain comprehensive
insights, including process control-flow, organizational view, and data decisions.

C14 Analysis scope. Given the plethora of healthcare data sources and types available
in modern healthcare facility settings, it is challenging to define the scope of data
that will maximize the effectiveness of the envisioned analysis.

C15 Analysis timeliness. Given the importance of in-action reflective practices in
healthcare, it is often essential to provide timely data analysis insights, which im-
poses requirements on the runtime efficiency of the analysis techniques.

C16 Analysis urgency. Healthcare data may require urgent analysis, for instance, in
situations of sudden health conditions requiring urgent attention from doctors or
specialists, such as in the case of emergency room treatment (Rojas et al., 2019).
Providing accurate insights for informed decision-making under time pressure is
challenging.

C17 Innovation drifts. The healthcare environment is knowledge-intensive, with new
treatment methods and innovative approaches to diagnostics appearing regularly,
leading to concept drifts in healthcare processes and, consequently, in the corre-
sponding healthcare data footprints. It is thus challenging to identify and account
for such drifts during healthcare data analysis (Bose, van der Aalst, Zliobaite, &
Pechenizkiy, 2014; Yeshchenko, Ciccio, Mendling, & Polyvyanyy, 2022).

C18 DIY (Do-It-Yourself) analysis. To cover a wide range of use cases, including
urgent and ad-hoc situations when the analysis results can be of interest, healthcare
practitioners should be able to perform the analysis with little assistance. This re-
quires tailoring the analysis techniques to this group of end users and a widespread
process mining literacy of healthcare staff, which is not trivial to achieve.

5.2 Limitations
At the time of writing this chapter, several important limitations still prevent process
mining techniques from being widely used in healthcare. These are summarized below.

L1 Methodologies. Several methodologies have been developed to support stan-
dard process mining analysis use cases. However, the choice of process mining
methodologies that target analysis of healthcare environments is somewhat limited
(Fernández-Llatas, Lizondo, Sanchez, Benedı́, & Traver, 2015; Rebuge & Ferreira,
2012; Vathy-Fogarassy, Vassányi, & Kósa, 2022), and no widely accepted tailored
methodologies that address the particularities of event data analysis in healthcare are
known todate. The best practices for performing process mining studies to support
various use cases in healthcare are still to be understood and systematized.
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L2 Skills. Today, healthcare organizations lack staff with expertise in process mining.
Due to the absence of dedicated process mining methodologies for healthcare, broad
expertise beyond process mining are often required to perform various data analysis
studies before valuable results can be obtained. Consequently, in the healthcare
context, it is currently not cost-effective to specialize only in process mining, which
limits the availability of experts in this field.

L3 Practical adoption. The absence of dedicated methodologies and the skill gap
prevent a comprehensive implementation and use of process mining techniques in
healthcare. Despite being not rare, process mining projects in healthcare are not
performed systematically.

L4 Categorical data. The majority of existing process mining techniques work with
categorical data, for example, records of performed activities and resources involved
in the execution of the activities, and do not analyze the processes as the evolutions
of characteristics of patients measured as, for instance, numerical or ordinal data.
For example, consider the process of the evolution of the CRP level of a patient
reported in Table 1 over time. Many insights in clinical settings relate to the series of
numerical measurements obtained during the diagnosis and monitoring of patients.

We envision these limitations will be addressed and overcome in the coming years.

5.3 Recommendations
Based on the analysis of processes and data types, see Section 3.1 and Section 3.2, this
section provides recommendations for the development of process mining discipline to
address the pertinent challenges of process mining in the healthcare setting reviewed
in Section 5.1. The recommendations are summarized schematically in Fig. 4.
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The variety of the data types in healthcare (C4, C5, and C7) calls for techniques
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to process categorical, discrete and continuous numerical, ordinal, time series, geospa-
tial, and sensor data, and expand the analysis from structured to semi-structured and
unstructured data captured in text and images. In Fig. 4, we refer to such data as
event data and envision that event data is provided as a collection of triples, each link-
ing an event, its attribute, and the value of this attribute. For example, the triplets(
1,Timestamp,7 Oct 2014 07:24:16

)
,
(
1,Activity,ER Registration

)
,
(
1,Group,A

)
, and(

1,Age,70
)

characterize event number 1 from Table 1.
The event data in healthcare is collected and produced by specialized software sys-

tems, which include systems like HMS (D1), EMR (D2), EHR (D3), RTLS (D4), PACS
(D5), and body sensors (D6), which can collectively be referred to as health informa-
tion systems. These systems monitor, support, and help to control special scopes of
interest (C14) that relate to patients and their families, health practitioners and health
teams, people and (autonomous) machines, and broader communities, with the focus
on the health of each particular individual (C12).

To address the complexity of the healthcare environments and the need for their
multi-perspective analysis (C13), the types of models addressed by process mining
techniques must be expanded significantly. In addition to conventional process models
studied by process mining techniques, models of participants or agents (Tour, Polyvyanyy,
& Kalenkova, 2021) involved in healthcare episodes, objects involved in healthcare
manipulations (Berti & van der Aalst, 2023), interactions between patients and doc-
tors (Tour, Polyvyanyy, Kalenkova, & Senderovich, 2023), and clinical decisions can
be studied to provide a nuanced analysis. For example, the analysis of individual
healthcare professionals and their interactions studied in agent system mining (Tour et
al., 2021) can support understanding the dynamics and effectiveness of temporal team
formations, common in healthcare, providing input for both in-action and on-action
reflections and subsequent evidenced-based learning.

Due to the multiple perspectives (C13) and aspects (C14) related to data analysis, to
avoid data overload, relevant event data must be identified. We refer to this problem as
scoping, refer to Fig. 4. An effective scoping of event data can improve the performance
of process mining (Han, Kamber, & Pei, 2011; Tour et al., 2021), including efficiency
(C15 and C16), interpretability (C10), and handling of heterogeneous and imbalanced
data (C3, C4, C5, and C6).

As multiple models of different types are discovered and analyzed, there is a need
for their integration (C7), also based on the evidence present in event data. For exam-
ple, agent and interaction models can be integrated into agent system models (Tour et
al., 2021), providing a comprehensive description of the healthcare environment, in-
cluding agents like patients, family members, doctors, nurses, healthcare equipment,
and information flow between them via interactions. Consequently, we see integration
as an important process mining problem.

Like machine learning, process mining can explore ways to use event data to learn
patterns and discover models for predicting future events and supporting decision-
making. We embrace these envisioned capabilities under the class of learning tech-
niques and extract a dedicated problem of learning from event data, solutions to which
should aim to construct such prediction and decision models.

The six problems in the context of process mining for healthcare are listed below:
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• Given software systems, event data they record, and the aims of a process mining
project, the scoping problem studies how to identify data and its sources that are
relevant to the purpose of the project.
• Given event data, the discovery problem consists of constructing models that de-

scribe the phenomena, for example, processes and agents, that generated the data.
• Given event data and models, the conformance problem studies how faithfully the

models describe the phenomena that generated the data.
• Given event data and models, the enhancement problem studies ways to improve the

accuracy of the models with respect to the phenomena that generated the data.
• Given event data that describes examples of inputs and outputs of executed histor-

ical instances of a task, the learning problem consists of constructing models for
predicting and making decisions when solving the future instances of the task.
• Given event data and models, the integration problem studies how to integrate the

models to obtain an accurate multi-perspective description of the phenomenon that
generated the data.

6 Conclusions
This chapter reviews the use of process mining techniques in healthcare settings. Specif-
ically, it discusses healthcare processes that can be the focus of process mining studies
aiming to understand the historical and current procedures and operations in healthcare
organizations and improve how they are carried out in the future. It also discusses data
readily stored and managed by health information systems that can inform process min-
ing analysis. Finally, the chapter reviews the existing challenges and limitations associ-
ated with the use of state-of-the-art process mining techniques in the healthcare context
and recommends studying healthcare processes as interactions of the stakeholders, in-
cluding patients, their family members and communities, and healthcare practitioners,
addressing perspectives that go beyond the behavior of process participants, using var-
ious data sources and non-standard data types.
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