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Abstract

In the Agent-Based Modeling (ABM) paradigm, an organization is a Multi-
Agent System (MAS) composed of autonomous agents inducing business pro-
cesses. Process Mining automates the creation, update, and analysis of explicit
business process models based on event data. Process Mining techniques make
simplifying assumptions about the processes discovered from data. However, ac-
tual business processes are often more complex than those restricted by Process
Mining assumptions. Several Process Mining approaches relax these standard
assumptions by discovering more realistic process models. These approaches can
discover more realistic process models. However, these models are often diffi-
cult to visualize and, consequently, to understand. Many MASs induce processes
whose behaviors become more complex with each next embraced time step, while
the complexities of these MASs remain constant. Thus, the ABM paradigm can
cope naturally with the increasing complexity of the discovered process models.
This paper proposes Agent System Mining (ASM) and ASM Framework. ASM
combines Process Mining and ABM in the Business Process Management (BPM)
context to infer MAS models of operational business processes from real-world
event data, while ASM Framework maps ASM activities to different phases of the
MAS modeling lifecycle. The paper also discusses the benefits of using ASM and
outlines challenges associated with the implementation of the ASM Framework.

1 Introduction

Business Process Management (BPM) is concerned with improving the opera-
tional performance of organizations through the BPM lifecycle [51]. BPM uses
process models to understand existing as-is processes and to communicate to-
be process designs. However, manual design and update of process models take
significant time and effort, even for medium-sized organizations.

Process Mining automates activities involved in creating, updating, and an-
alyzing the explicit process models based on the knowledge about the real-world
operational processes extracted from current and historical event data managed
by information systems [45]. Process Mining techniques use event logs as their
input. These event logs are recordings of operational processes captured by the
information systems. Each event in an event log has at least three attributes:
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case id, timestamp, and activity. The case id attribute identifies the case (also
known as a process instance) the event belongs to. The timestamp attribute
indicates a point in time when the event occurred. Finally, the activity at-
tribute refers to the activity that triggered the event. Other Process Mining
perspectives may require events to contain additional attributes. For example,
the organizational perspective requires data on resources such as people, roles,
teams, or technological entities that executed the activities [39].

Process Mining techniques make several assumptions about the input event
logs. Examples of the Process Mining assumptions are: each event in the log
corresponds to exactly one process instance (case) and single case notion [46];
all instances of an activity for a specific case are recorded in the event log [47];
every event in the log can be related to some activity [43]; cases presented in one
event log do not share resources for the activity execution [35]; and all events
related to the same case are totally ordered and linked into a single control
flow [43].

These assumptions allow focusing on the development of targeted Process
Mining methods but also create a gap between the Process Mining event data
expectations and the event logs captured from the real-world business pro-
cesses [46]. Actual business processes are often more complex than those re-
stricted by Process Mining assumptions. As a result, process models discovered
by the classical Process Mining techniques do not represent the full complexity
of real-world business processes.

Several Process Mining approaches relax the standard assumptions. Object-
Centric Process Mining (OCPM) challenges the single case notion assumption
and the existence of precisely one process instance for each event [46]. OCPM
assumes that an event may relate to multiple objects corresponding to different
case notions. In turn, Queue Mining (QM) relaxes the immediate resource avail-
ability assumption [36]. QM addresses situations where multiple cases compete
for limited resources, process execution is delayed, and activities are completed
only when resources become available. In [58], the authors relax the assumption
that a business process is recorded in a single event log by proposing a frame-
work for top-down Process Mining from multi-sourced event logs in the context
of the cross-organizational business process [42].

The relaxation of the standard Process Mining assumptions leads to dis-
covering process models that better reflect real-world processes. However, the
produced process models tend to be more difficult to visualize and understand
as they contain more elements and relationships. The resulting phenomenon of
complex discovered models is known as the “spaghetti process models” prob-
lem [48]. The more Process Mining assumptions are relaxed, the more critical
this problem becomes.

To manage the complexity of discovered models, organizations can be con-
sidered and analyzed as socio-technical systems. Socio-technical systems are
systems composed of technical and social (human) components [55]. The busi-
ness processes of an organization addressed as a socio-technical system can be
described from two viewpoints: macro-level and micro-level. At the macro-
level, end-to-end global business processes (e.g., an order-to-cash process) are
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performed by the organization as a whole. At the micro-level, local procedures
and work instructions are specified separately for – and are carried out by – each
human or technical component. Traditional Process Mining techniques produce
macro-level holistic, fully connected end-to-end control flow models.

Self-organization is one of the most flexible methods for business process
adaptation [21]. Self-organizing processes have parts of their macro-level flows
unspecified. Consequently, the macro-level business process behavior emerges
bottom-up from local distributed interactions of the system components. These
interactions occur at the micro-level within the system without a macro-level
centralized end-to-end control. This lack of macro-level control leads to a sit-
uation where total ordering and casual dependency of events within a self-
organized process are not guaranteed. Therefore, to produce models that encode
the self-organizing behaviors, Process Mining techniques must relax the single
control flow assumption that posits the total order and casual dependency for
all events belonging to the same process instance.

Agent-Based Modeling (ABM) is an approach for modeling and simulating
organizations [4]. It can be used to conceptualize an organization as a self-
organizing socio-technical system composed of autonomous agents. In ABM,
observed macro-level business processes emerge from local micro-level behav-
iors of agents interacting with each other and the environment. This approach
does not explicitly define holistic macro-level control flows. Instead, separate
micro-level agent models are integrated into one Multi-Agent System (MAS)
dynamically through simulated message exchange among agents. The macro-
level behavior of such systems can be understood by observing and analyzing
their simulation runs.

Our hypothesis is that the ABM paradigm is suitable for the automated
mining of business processes from event data. This paper proposes Agent Sys-
tem Mining (ASM) that combines Process Mining with ABM to automate the
creation of MASs that encode operational business processes of organizations.
ASM supports constructing compact agent-based representations of emergent
real-world business processes. This ability is based on the property of agent-
based models to simulate the non-decreasing complexity of the behavior of self-
organizing socio-technical systems [54]. It also provides a different perspective
for analyzing processes that helps to study the macro-level business process im-
pact of micro-level changes. The paper describes key ASM concepts, specifies
ASM phases and activities, and identifies the benefits and challenges associated
with ASM.

The remainder of the paper is structured as follows. Section 2 describes a
motivating example identifying the existing problems and providing motivation
for ASM. Section 3 introduces the key concepts and relationships ASM is based
on. Section 4 establishes ASM and discusses its benefits and challenges. Sec-
tion 5 reviews existing work in the related research fields. Finally, Section 6
draws conclusions and outlines directions for future work.
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2 Motivating Example

To illustrate the problem of traditional Process Mining and demonstrate the
potential benefits of ASM, we use a simplified example of an “order fulfillment”
process performed by a hypothetical retail organization. This example uses GIS
data about locations and routes in France from the “Supply Chain GIS Model”
example in the AnyLogic documentation [5].

timestamp activity location activity_location resource product_code order_id order_item_id batch_id

27/10/2020 08:50:46 order_completed Tours order_completed_Tours retailer_13 777 19 31 91

27/10/2020 08:54:41 batch_requested Nancy batch_requested_Nancy retailer_15 115 31 53 118

27/10/2020 08:54:41 started_moving_to_distributor Nancy started_moving_to_distributor_Nancy truck_15 115 31 53 118

27/10/2020 08:56:17 order_received Toulon order_received_Toulon retailer_9 333 32 55 0

27/10/2020 08:56:17 order_item_delivery_started Toulon order_item_delivery_started_Toulon retailer_9 333 32 55 0

27/10/2020 08:56:17 order_received Toulon order_received_Toulon retailer_9 505 32 56 0

27/10/2020 08:56:17 order_item_delivery_started Toulon order_item_delivery_started_Toulon retailer_9 505 32 56 0

27/10/2020 08:56:17 order_received Toulon order_received_Toulon retailer_9 777 32 57 0

27/10/2020 08:56:17 order_item_delivery_started Toulon order_item_delivery_started_Toulon retailer_9 777 32 57 0

27/10/2020 08:57:02 order_item_dispatched Toulon order_item_dispatched_Toulon retailer_9 333 32 55 59

27/10/2020 08:57:43 batch_requested Toulon batch_requested_Toulon retailer_9 505 32 56 119

27/10/2020 08:57:43 started_moving_to_distributor Toulon started_moving_to_distributor_Toulon truck_9 505 32 56 119

27/10/2020 09:26:29 order_received Tours order_received_Tours retailer_13 997 33 58 0

Figure 1: A fragment of an event log

The organization has multiple retailers in different locations in France and
a single distributor. The retailers receive customer orders. Each order received
by a retailer may have multiple order items with different product codes. To
fulfill order items, the retailers request products from the distributor in batches.
Vehicles move product batches from the distributor to the retailers. When a
retailer runs out of stock for a specific product, they send a truck to bring a
new product batch from the distributor back to the retailer. Trucks are initially
co-located with retailers. When a truck receives a product batch request from
a retailer, it moves to the distributor, picks up the requested product batch,
and transports it back to the retailer. An order fulfillment process is completed
when all items included in the order are dispatched to the customer by the
retailer that received the order.

Fig. 1 shows a fragment of an event log containing event data captured from
the example business process.1 Each row in the log corresponds to one event
in the order fulfillment process. The “timestamp” attribute specifies a time
point when the event occurred. The “activity” attribute refers to the activity
that induced the event and specifies its event type. The “location” attribute
identifies the place or area where the event occurred. The “resource” attribute
points to an active entity that generated the event. Finally, the “product code”,
“order id”, “order item id”, and “batch id” attributes identify, respectively, the
product type, order, order item, and product batch corresponding to the event.

Fig. 2 shows a Directly-Follows Multigraph (DFM) control flow model auto-
matically discovered using the Disco tool [18] from the example event log with
the “product code” attribute used as a case identifier. The input to the Disco

1The entire log can be downloaded from here: https://doi.org/10.26188/14401400.
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Figure 2: An order fulfillment DFM that uses location-agnostic activities

tool is a collection of traces, where each trace corresponds to a case and com-
prises a sequence of events ordered according to their timestamps. This control
flow model is discovered under the assumption that all activities of the same
type are performed in the same way without considering specific location con-
texts. For example, the “batch requested” activity performed in Nancy is of the
same type as the “batch requested” activity performed in Toulon. Hence, they
are represented by the same “batch requested” node in the discovered DFM.

One can remove the assumption of location-agnostic activities and consider
location-specific activities. We use pairs of activity and location attributes as a
location-specific activity type to enable the discovery of a localized control flow
model. For example, the “batch requested” activity and the “Nancy” location
are combined to form the location-specific activity “batch requested Nancy”.
Similarly, the “batch requested” activity and the “Toulon” location are com-
bined into the location-specific activity “batch requested Toulon”.

Fig. 3 shows the DFM discovered based on location-specific activities. In
this control flow model, the same activity that occurred in different locations
is represented by different nodes in the DFM. For example, two instances of
the “batch requested” event that occurred in different locations, Nancy and
Toulon, are represented by two separate nodes, “batch requested Nancy” and
“batch requested Toulon”. This location-aware version of the control flow model
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Figure 3: Order fulfillment example DFM with location-aware activities

is closer to the actual variability and complexity of the order fulfillment business
process than the location-agnostic model in Fig. 2. However, the model in
Fig. 3 is a “spaghetti process model” that is difficult to understand and use for
decision-making in the BPM context.

Based on the ABM paradigm, events captured in the example event log can
be interpreted as macro-level behavior emerging from micro-level behaviors of
retailer agents, vehicle agents, and the distributor agent. These agents inter-
act and act on passive objects (e.g., orders, order items, products, and product
batches) in their environment (multiple locations in France). Agents can remain
in the same location (e.g., retailers and distributor) or move in the environment
(e.g., vehicles). Fig. 4a illustrates state chart models of micro-level behavior
for the three agent types from the order fulfillment example process. The sep-
arate agent models are linked with each other and the environment model in
the simulation runs by executing the behavior rules specified for each agent and
the environment. The collection of all agent models, the environment model,
and the interaction rules constitute the integrated MAS model. The macro-
level emergent behavior is induced by simultaneous execution of all micro-level
behavior rules defined for each agent and the environment included in the inte-
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(a) Agent models (b) MAS model

Figure 4: Example agent models and an integrated MAS model

grated model. Fig. 4b shows a screenshot of the example MAS model simulation
run performed on the AnyLogic simulation engine [6].

The example agent models and the integrated MAS model are not “spaghetti
models”; hence they are more understandable. The micro-level agent models
enable a focused analysis of the local behaviors of agents. For instance, ac-
cording to the retailer agent model (see Fig. 4a), a retailer does not take or
process customer orders when its product stock level is low. This insight sug-
gests an opportunity to improve the micro-level retailer behavior by making it
possible for the retailer to accept customer orders while waiting for requested
products from the distributor. This improvement opportunity would be difficult
to identify based on the macro-level control flow models in Figures 2 and 3.

3 Organizations and Multi-Agent Systems

This section explains the key concepts of ASM, which shifts the understanding
of business processes from being executed by a centralized control flow of activi-
ties to emerging as a result of interactions among people, software, and physical
components within organizational systems. The remainder of this section intro-
duces the fundamental concepts pertinent to these two viewpoints.

3.1 Organizations as Socio-Technical Systems

BPM and Process Mining often use the terms “system”, “information system”,
and “business process management system” to refer to a collection of software
and hardware components that capture, process, store, and produce information
about different aspects of an organization and its business processes [52]. The
concept of a “system” as a cohesive whole containing parts that interact to serve
some purpose is used in many research disciplines and application domains to
manage the complexity of a broad range of natural and artificial phenomena.
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The general system theory [3] and cybernetics [53] provide the inter-disciplinary
foundations for the “system” and related concepts.

The “system” concept, in the latter and arguably broader sense, can be
applied to a real-world organization. The whole organization or its subset, for
example, several departments or branches of the organization, can be modeled
as socio-technical systems composed of social and technological components [55].
The social components include employees, teams, and departments. Software
applications, robots, and equipment are examples of technological components.
A socio-technical system model of an organization explicitly defines the system
boundary separating the components inside the system from entities in the
environment, hence outside the system. The system boundary allows identifying
the system inputs and outputs used to exchange matter, energy, and information
between the system and its environment.

In the order fulfillment example process described in Section 2, all the retail-
ers, vehicles, and the distributor are components of one socio-technical system.
The retailers and the distributor are social actors representing the departments
of the organization. The vehicles are the technological components of the sys-
tem. The system boundary is explicitly defined by enumerating all its com-
ponents and their locations. For example, customers are entities outside the
system that exchange information (e.g., order requests) and matter (e.g., dis-
patched order items) with the system.

3.2 Business Processes

A system exhibits observable behavior through changes in the system’s state,
inputs, and outputs over time. These changes are called events. From the
BPM perspective, a business process is a sequence of activities manifested as
events [50]. The same sequence of events produced by an organization can be in-
terpreted as the organizational system behavior (from the socio-technical system
perspective) and the organizational business processes (from the BPM perspec-
tive). By integrating the two perspectives, we can say that an organization as a
socio-technical system generates its behavior by performing business processes.
An organization, as a system, executes its business processes to produce the
system outputs from the system inputs via state changes.

The process models in Figures 2 and 3 represent the behavior performed by
the example organization as s single socio-technical system. The order deliv-
ery business process receives customer order requests as the system inputs at
the retailer locations. The system performs process activities and produces dis-
patched order items as system outputs. Changes in the product stock levels and
vehicle locations during the execution of the business process can be understood
as the organizational system state changes.

3.3 Macro- and Micro-Level Behaviors

A collection of business process events can be interpreted from the whole-
of-system perspective (top-down) or from the system component perspective
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Figure 5: Macro- and micro-level abstractions of system behaviors

(bottom-up). These viewpoints correspond to the macro-level and micro-level
of the system analysis. At the macro-level, the events are described as be-
ing experienced or produced by a single system-wide entity having information
about all changes in the system’s global state and controlling all system activi-
ties. The micro-level viewpoint is at the level of individual system components
that observe and produce events in their local environments. The macro- and
micro-level system viewpoints are also described in the systems modeling liter-
ature using the global/local [10] and macroscopic/microscopic [33] dichotomies.
Fig. 5 illustrates abstractions of business processes as macro- and micro-level
system behaviors.

The control flow models of the example order delivery process in Figures 2
and 3 are examples of macro-level behavior models. All activities represented in
these models are considered as executed by the system as a whole following the
global execution sequence. The local agent models in Fig. 4a are sub-models
that induce the micro-level behavior, where each agent sub-model focuses on
the behavior of one system component. For example, the retailer statechart
describes the behavior of any retailer component included in the micro-level
order delivery model.

3.4 Agents and Multi-Agent Systems

An agent is a central concept in the ABM paradigm. Autonomy, situatedness,
proactivity, and sociality are the key aspects differentiating agents from other
types of entities [56]. Autonomous agents achieve their goals by following their
internal execution flows fully independent from the external control. The sit-
uatedness aspect points to the interaction of agents with their heterogeneous
and dynamic environment. Proactive agents can plan and initiate their activ-
ities as opposed to passively reacting to events in the environment. Finally,
social agents interact to realize shared goals or obtain necessary resources or
information.

The combination of ABM and systems thinking produces a Multi-Agent Sys-
tem (MAS) concept, as a system comprised of agents [19]. The trading organi-
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zation from Section 2 or any subset of its departments, teams, and assets can
be modeled as a MAS. An organizational MAS can execute multiple business
processes (e.g., the order delivery process). A MAS contains multiple agents
(e.g., the retailers, the vehicles, and the distributor in our example) sharing the
same environment. The macro-level MAS behavior is defined using the MAS
inputs, outputs, states, and global behavior rules. The micro-level behaviors
are defined by agent inputs, outputs, states, local behavior, and interaction
rules. The environment state and behavior rules are also part of the micro-level
behavior definition.

4 Agent System Mining

This section establishes ASM and defines ASM Framework. ASM automates
ABM in the BPM context by extending Process Mining to analyze and discover
MAS models from real-world event data. ASM Framework maps ASM activities
to different phases of the MAS modeling lifecycle.

4.1 ASM Context

Fig. 6 outlines the ASM context. BPM stakeholders (Model Users) make BPM

Decisions related to planning, designing, and improving Real-World Organization

Business Processes using Business Process Models. These models are stored in Model

Repositories. If the existing models do not meet the decision-making needs, the
BPM Stakeholders may request new MAS development by providing Modeling Ob-

jectives to the MAS Modeling and Simulation Lifecycle. Modelers perform Modeling

Tasks within the lifecycle phases to achieve the Modeling Objectives formulated by
the BPM stakeholders. The Modeling Tasks may be performed manually or using
various levels of automation. Agent System Mining (ASM) Algorithms aim to auto-
mate these Modeling Tasks by implementing ASM activities (e.g., discover, check,
enhance, and integrate). These algorithms automatically produce, analyze, im-
prove MAS models of the Real-World Organization Business Processes using the ex-
isting MAS and Other Business Process Models and Real-World and Simulated Event

Logs. The resulting MAS Models are stored in Model Repositories and MAS Simu-

lators. ASM analysis relies on Real-World Event Logs from Information Systems and
Simulated Event Logs from MAS Simulators. Information Systems record Real-World

Event Logs by capturing Observed Behavior of the Real-World Organization Business

Processes. MAS Simulators generate Simulated Event Logs by running simulations
of MAS Models.

4.2 ASM Framework

ASM Framework defines phases, tasks, activities, and artifacts involved in the
development and analysis of MAS models of business processes. Fig. 7 provides
an overview of the framework showing its main elements connected by logical
dependency links. The diagram is inspired by the V-model lifecycle presentation
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Figure 6: ASM Context

approach [34]. Systems engineers often use two-dimensional V-model diagrams
to represent frameworks and lifecycles of multi-level engineered systems. In
our framework, we organize the ASM Framework phases into a V-model of the
MAS modeling lifecycle. The horizontal dimension from left to right represents
the modeling timeline. The vertical dimension represents different levels of
MAS viewpoints, including the model user viewpoint (Phases 1 and 5), the
model developer viewpoints at the whole-of-model level (Phases 2 and 4), and
the model developer viewpoint at the model component level (Phase 3). The
framework assumes that a MAS model consists of three model component types:
agent sub-models (one sub-model for each agent), a single environment sub-
model, and a single interactions sub-model.

4.2.1 ASM Phases

ASM Framework defines five phases of the MAS modeling lifecycle. The phases
are sequenced in time and may overlap, allowing for multiple iterations among
MAS modeling tasks belonging to different ASM phases. In each phase, the
modeling tasks produce one or more output ASM artifacts using the input arti-
facts created in the previous phases. All the tasks in Phases 1 and 5 are executed
manually by the modelers or the model users. The ASM algorithms partially
or fully automate the MAS activities in Phases 2, 3, and 4.

Phase 1 (Motivate) requests the development of a business process MAS
model and articulates motivation for this model in terms of the BPM stakeholder
needs. This phase identifies problems in the BPM context of the organization
and sets MAS modeling objectives to address these problems. The objectives are
formulated as benefits that are expected to be achieved by using the requested
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MAS model. ASM activities are not involved in this phase.

Phase 2 (Plan) specifies the scope, required features, and constraints of the
MAS model. This phase produces the following ASM artifacts: the suitable
MAS metamodel that defines model concepts and their relations; the model
frame that defines the context, scope, possible inputs, outputs, macro state
variables for the MAS model, as well as the model requirements, assumptions,
and constraints associated with the modeling objectives [57]; in-scope event
logs selected from the real-world and simulated event data; in-scope models
retrieved from the model repositories containing validated models previously
created manually or automatically using the ASM activities. The search and
project ASM activities support modeling tasks in this ASM phase.

Phase 3 (Develop) produces a MAS model containing multiple agent sub-
models, one environment model, and one interactions model. The inputs to this
phase include the metamodel, the model frame, and the existing event logs and
models. The produced MAS model can be executed on a MAS simulator to
induce the emergent macro-level behavior. This phase uses the discover and
enhance ASM activities to infer the agent sub-models and the environment sub-
model. The integrate ASM activity is involved in inferring interactions between
the inferred agent and environment sub-models and integrating them into one
executable MAS model.

Phase 4 (Evaluate) verifies and validates the input MAS model and its sub-
models. The framework interprets the concepts of verification and validation in
the same way they are defined for simulation models [32]. The model verification
checks if the model and its sub-models are correct. The model validation ensures
that the model is sufficiently accurate and useful for meeting the modeling
objectives within its application domain. The verification and validation tasks
in this phase are supported by the diagnose and check ASM activities.

Phase 5 (Use) uses the validated and verified MAS model to understand,
audit, design, and improve organizational business processes within the BPM
decision-making context. The BPM stakeholders and the modeling experts run
simulations and perform static analysis of the model and interpret the results.
The BPM insights obtained in this phase outline additional modeling needs and
objectives. This leads to new MAS modeling requests and new iterations of the
MAS model lifecycle starting from Phase 1. Similar to Phase 1, this phase does
not use any ASM activities.

4.2.2 ASM Activities

ASM activities represent functions implemented by ASM algorithms and used
in different ASM phases. ASM Framework defines seven ASM activities that
partially or fully automate MAS modeling tasks involved in Phases 2, 3, and 4.
Some ASM activities (e.g., discover, enhance, check, and diagnose) are inspired
by the corresponding Process Mining activities [44]. Next, we detail the ASM
activities.
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Search activity selects a collection of existing event logs and business process
models that match a given model frame. The search is performed over the
organizational information systems and the model repository. This activity is
used in Phase 2 of ASM Framework to identify in-scope event logs and models.

Project activity takes a model frame and existing business process models
that do not match this frame and produces a MAS model that matches the
given model frame. The model projection may be required when an existing
model exceeds the model frame or when several existing models have to be
merged to match the given model frame. This activity is used in Phase 2 to
identify existing business process models that can be used in Phase 3 to develop
new MAS models.

Discover activity takes the selected event log or an existing business process
model as input and produces multiple agent sub-models and a single environ-
ment sub-model of a MAS model as output. An event log contains agent and
environment event data and other information required for the MAS discovery.
The sub-models are discovered separately for each agent and the environment.

Enhance activity takes the selected event log and an existing MAS model as
input and produces enhanced versions of the input MAS agent and the environ-
ment sub-models. The enhancements may include the introduction of additional
agents, state variables, or behavior rules. Similar to the discovery activity, the
enhance activity does not address the problem of integration of the enhanced
versions of the MAS sub-models.

Integrate activity takes the sub-models produced by the discover and enhance
activities as input and produces the interactions sub-model of the MAS model
as output. The produced interactions sub-model integrates the separate agent
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and environment sub-models.

Diagnose activity takes a MAS model as input and calculates quality indica-
tors for the modeled system. The indicators can be calculated from the input
model itself or using event logs generated by the model execution. The indi-
cators can be defined at the whole-of-model level, and the level of individual
actors or the environment.

Check activity relates the newly discovered or enhanced model versions and
the existing verified and validated versions of the same model. To identify and
quantify the differences, log-to-log, model-to-model, and log-to-model compar-
isons of real-world event logs, simulated event logs, and integrated MAS models
are performed. The diagnose and check activities are used to verify and validate
the inferred MAS models and their sub-models.

4.3 ASM Benefits

The benefits of ASM stem from introducing the bottom-up ABM paradigm to
business process mining where, traditionally, top-down approaches dominate.
We consider two categories of ASM benefits: direct and indirect. Direct ASM
benefits are the benefits of automating the development of agent-based models of
business processes from event logs instead of performing this modeling manually.
Indirect ASM benefits are the benefits of using the ABM paradigm to model
and analyze business processes.

Example direct ASM benefits are discussed below.

Evidence-based modeling. Automated analysis of event logs enables pro-
cessing significantly larger amounts of data compared to manual analysis. This
ability often leads to discovering additional empirical insights that otherwise
remain hidden when manual process analysis techniques are used.

Shorter model development cycles. Full or partial automation of business
process modeling activities shortens the time required to create and update
models. Consequently, shorter model development cycles allow faster identifica-
tion of changes in business processes. Thus, organizations can react faster and
take timely actions to resolve arising issues.

Better conformance. By automating the comparison of existing normative
process models with actual processes recorded in event logs, Process Mining re-
duces the time and effort of business process auditing and conformance checking,
leading to better process compliance outcomes.

Direct ASM benefits can be realized by automating ASM activities applied in
the context of agent-based business process management frameworks. Exam-
ples of such frameworks are agent-based BPM frameworks and approaches such
as Subject-oriented Business Process Management (S-BPM) [38], Multi-Agent
Business Process Modeling Notation Decision Footprint (MABPMNDF) [16],
and the Knowledge Intensive Adaptive Business Process Management Frame-
work (agileBPM) [22].

Next, we discuss example indirect ASM benefits.
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Managing complex processes. The need for managing the complexity of
discovered models is evidenced by the “spaghetti process models” that are dif-
ficult to understand and analyze [48]. Automatically discovered control flow
models of complex business processes contain a significant number of elements
and relationships, and, hence, their visual representations resemble spaghetti.
In general, MAS models can induce system behaviors that over time demon-
strate non-decreasing complexity [54]. In other words, a MAS model can induce
system behavior whose complexity increases over time, while the size and com-
plexity of the model stay unchanged. Consequently, MAS models can address
the “spaghetti process models” problem by replacing the complex spaghetti
control flow models with corresponding MAS models that induce the behavior
described by the spaghetti models and are of manageable size and complexity.

Managing flexible processes. Some application domains are characterized
by increased levels of business process agility and dynamism. Knowledge-
intensive [22] and operational risk management processes [4] are examples of
such processes exhibiting a high level of flexibility through non-linear, chang-
ing interactions among learning and adaptive participants. A suitable approach
for modeling flexible business processes is encoding them as adaptive socio-
technical systems [21], and ASM can support such interpretation of business
processes through self-organizing MASs.

Managing context-aware processes. Context-aware models capture con-
textual factors inherent to the real-world business processes, for example, time,
location, and socio-cultural norms [31]. MAS models can represent distributed
business processes embedded into heterogeneous environments, where the en-
vironment and positions of participants in the environment are essential and
not static [4]. Moreover, MAS models can explicitly capture agent mobility and
changes in the process execution environment.

4.4 ASM Challenges

The key ASM objective is to achieve the highest level of automation in producing
useful executable MAS models of business processes captured in event logs.
ASM faces several challenges relevant to its different phases and activities on
the way to this objective. Next, we discuss several important example challenges
of ASM.

MAS metamodel selection. Several metamodels have been proposed for
multi-agent-based simulations to achieve the ABM objectives in different ap-
plication domains [23]. All agent-based metamodels introduce the notions of
agent, environment, and interaction. However, these metamodels use differ-
ent approaches for modeling details of agents and environment, micro-level and
macro-level states, and interactions between the agents. The challenge, thus, is
to select a MAS metamodel suitable for ASM activities in different application
contexts. For example, Fig. 8 shows a simplified MAS metamodel that outlines
the key agent-based concepts and relationships used in the motivating example
in Section 2.
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Figure 8: An example ASM metamodel

MAS model scope definition. The model scope is a frame that divides all
real-world entities and events into important and not important for achieving
the given modeling objectives. The defined scope is used to select event data and
existing BPM and MAS models to support the ASM activities. For example,
it may not be enough to use 3-dimensional space and time dimensions for the
model scope definition, as multiple real-world events may happen at the same
time and place. Therefore, additional criteria are required for effective scope
definition (e.g., service type and customer segment). The challenge, hence, is
to devise a simple MAS model scope definition method capable of producing
suitable model scopes for given modeling objectives.

MAS simulation and static analysis support. MAS models obtained
through the ASM activities should be suitable for execution on a simulator.
Multiple simulation platforms are available for executing agent-based models.
However, these platforms use different model formats and notations. There-
fore, ASM integration with all available agent-based simulation platforms is not
practical or feasible. At the same time, the model users and modelers should
be able to perform static analysis of the discovered MAS models. Hence, on the
one hand, the produced models and model components should be interpretable
by expert and non-expert stakeholders. But, on the other hand, these models
should be executable on multiple simulation platforms. The challenge, there-
fore, is to find a balance between the model readability by humans and the
ability to simulate the model on multiple platforms.

MAS model validation. MAS models produced by the ASM activities must
be validated to confirm that they are suitable for the intended purposes. For
example, the validity of a model can be measured by comparing the event log
produced by simulating the model with the event log of the corresponding real-
world business process. The comparison can be performed at the micro- and
macro-level system behaviors. The challenge, thus, is to identify measures and
methods for the comparisons of MAS model logs and real-world business process
logs. In general, other means for validating MAS models constructed from
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process data need to be devised.

Event data selection. An event log must contain enough information to en-
able ASM algorithms, for instance, to allow the identification of agents, their
locations, and interactions. In addition, the data should contain information to
infer the behavior rules for the agents and environment. The required data can
be incomplete and distributed across several data sources. For example, in the
cross-organizational context, a single complete event log of a business process
may not be available due to data privacy preservation requirements [25]. Fur-
thermore, the log data samples may be “shaped” by a specific context (e.g., day
of the week, weather, and personalities of participants) and, therefore, exhibit
high variability. Some available data may not be relevant to the modeling scope
and objectives. All these factors contribute to the challenge of defining the
methods for selecting relevant and complete event data that the ASM activities
can use to produce MAS models complying with the given MAS metamodel and
modeling objectives.

Agent type discovery. In a MAS model, agents can be clustered into types
based on similarities in their behavior patterns and other characteristics. Con-
sequently, all agents from the same cluster (agents of the same type) can be
represented by the same agent model in the integrated MAS model. The inabil-
ity to group agents based on their type can lead to complex, overfitted MAS
models. Hence, the challenge is to group agents into types so that agents of the
highest similarity have the same type. A solution to this challenge requires a
definition of a similarity measure between agents and an approach for measuring
it. Such a measure should identify agent characteristics that can be used for the
comparison.

Sub-model discovery. To construct an integrated MAS model, a sub-model
must be discovered for every agent type and the environment. An agent sub-
model captures the agent’s reactions to the inputs, decisions, and actions. The
environment sub-model encodes the environment state and describes rules for
changes in the environment state. Given an event log of a business process, the
challenge is to discover sub-models based on the information about recorded
events that relate to multiple agent types and the environment. ASM algorithms
should handle situations when one event from the log is relevant to multiple
agents, the environment, a single agent, or not related to any agent within a
given model frame.

Modeling language selection. Separately discovered agent and environment
sub-models must be integrated into a holistic MAS model. This integration
is achieved using sub-models describing agent interactions. The agent inter-
actions sub-models should represent suitable interaction patterns, e.g., syn-
chronous and asynchronous, with different assumptions about message delivery
reliability, from the best-effort delivery to the guaranteed delivery. In addition,
the integrated MAS model should be consistent and complete. A MAS model is
consistent when there are no contradictions among its sub-models, and it is com-
plete when its sub-models cover the entire scope specified by the model frame.
Hence, the challenge is to identify suitable modeling languages that can describe
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MAS models with a broad range of agent interaction patterns to maximize the
integrated model completeness and consistency.

5 Related Work

This section provides a review of the research work related to ASM to identify
reusable results and gaps in the existing knowledge base. This review follows the
framework for conducting IS literature reviews proposed by vom Brocke et al [8].
It includes three steps: review the scope definition and identification of key
concepts, literature search and selection, and literature analysis and synthesis.

5.1 Review Scope and Key Concepts

The review scope is defined by selecting relevant categories for the six litera-
ture review characteristics highlighted in the Cooper’s taxonomy of literature
reviews [11]. In this review, (i) we focus on the recent research outcomes, (ii)
our goal is to summarize outcomes found in the reviewed publications related
to the guiding questions, (iii) we use the key concepts to organize the search,
(iv) we conduct the review from a neutral perspective without espousing our
position, (v) our target audience is scholars specialized in the related fields, and
(vi) we cover only literature closely related to ASM.

Fig. 9 shows a Venn diagram demonstrating research fields we identify as
related to ASM, namely Agent-Based Modeling & Simulation, Business Process
Management, Process Mining, and Data Mining.

Agent-Based
Modeling & Simulation

Business Process 
Management

Process
Mining

Data
MiningASM

Figure 9: Research fields related to ASM

Based on the ASM purpose discussed in Section 4 and the identified related
research fields, the review scope is further specified by the following guiding
research questions:

RQ1 How are agent-based models used in BPM?
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RQ2 Which Data Mining techniques can be used to infer (parts of) MAS models
from data?

RQ3 Which Process Mining techniques can be used to infer (parts of) MAS
models from event data?

The following concepts are central to the identified related research fields
and the guiding questions: agent, business process, process mining, and data
mining.

5.2 Literature Search and Selection

We defined the following concept-based search queries corresponding to the three
guiding research questions:

Q1 agent AND “business process”;
Q2 agent AND “data mining”;
Q3 agent AND “process mining”.

The queries were configured with the following search parameters: “databases:
Scopus, Web of Science”; “language: English only”; “year of publication ≥
2010”; “document type: article, conference paper”; “textual content: title, ab-
stract, keyword”; “subject area: computer science”.
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Figure 10: Number of published papers (per year)

We executed the three queries separately in the two databases on 16 Febru-
ary 2021. The Scopus database returned 414, 1260, and 37 results for queries
Q1, Q2, and Q3, respectively. The Web of Science database returned 228, 476,
and 24 results for queries Q1, Q2, and Q3, respectively. The six result sets were
merged and duplicate entities removed. The merged set of results contained
2,094 publications. These publications were further filtered in two steps. First,
1563 papers were excluded based on the title relevance. In addition, 384 irrel-
evant papers were identified based on the abstracts. The remaining 149 papers
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were analyzed to fulfill the purpose of this review. 2 Fig. 10 shows an overview
of the distribution of the selected papers per year.

5.3 Literature Analysis

The identified 149 relevant papers can be split into two categories. The papers
from the first category focus on applying ABM for managing business processes.
The papers from the second category discuss algorithms for automated verifica-
tion and generation of MAS models from data. The insights obtained from the
former category are summaries in Section 5.3.1 to answer research question RQ1
stated in Section 5.1, while the insights from the latter category are discussed
in Section 5.3.2 and answer research questions RQ2 and RQ3.

5.3.1 ABM in BPM

Several authors discuss the idea of using the ABM paradigm and, more specifi-
cally, modeling an organization as a MAS to address decentralization, flexibility,
agility, and self-adaptation of business processes in several application contexts.
The multi-agent models are applied for measuring change management capa-
bility performance in a manufacturing company [1]. An agent-based simula-
tion is used to test improvements in the flexibility and agility of business pro-
cesses [17]. Several papers describe the use of ABM in the multi-organizational
context. Agent-based simulation can be used to analyze cross-organizational
performance [13] and is suitable for formalizing business processes in virtual
enterprises [15]. Risk-aware business process management can benefit from the
ability of ABM to describe agent-environment interactions [40]. MAS mod-
els are also proposed as a method for explicit representation of responsibilities
and accountabilities in business processes [2], as well as for validating business
requirements [27]. Finally, the concept of multi-agent cooperation is used for
simulating the business processes of service businesses [41].

Multiple modeling methods, frameworks, metamodels, and formalisms are
proposed for defining and implementing MAS models of business processes to
support BPM activities. Subject-oriented Business Process Management (S-
BPM) represents a process as a network of distributed and independent agents
exchanging messages to coordinate work [30]. The agileBPM framework de-
fines a modeling methodology to express business interest, environment, and
processes according to the agent-based paradigm [22]. Hunka and van Kervel
discuss how Design Engineering Methodology for Organization (DEMO) can
strengthen the theoretical foundations of the Resource-Event-Agent (REA) on-
tology to create more precise descriptions of an organization [20]. The Input-
Process-Output (IPO) abstraction [24] enables a simpler and faster approach to
model a MAS in comparison with some other agent-based methodologies like
Gaia [56], Tropos [7], and Multiagent Systems Engineering (MaSE) [12]. The
Belief/Desire/Intentions (BDI) metamodel is used to describe a MAS behavior

2The complete list of selected papers can be downloaded from here: https://doi.org/10.
26188/14708772.
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matching that of the input real-world organization [49]. Finally, nested Petri
nets (NP-nets) are used to model agents as processes and synchronize these
agents into a formal MAS model of a trading software system [9].

A significant number of use cases for ABM in BPM indicates the relevance of
ASM. Even though multiple frameworks and metamodels exist for MAS model-
ing and development, little research has been done to understand which frame-
works and metamodels are suitable for inferring MAS models from business
process data.

5.3.2 Algorithms for inferring MAS models from data

Most research that integrates the ABM paradigm with the Data Mining and
Process Mining fields is dedicated to MAS implementations of Data Mining
and Process Mining platforms and traditional Data Mining and Process Mining
techniques to analyze engineered software and cyber-physical MASs. Relatively
little research has been done on algorithms that generate MAS models of real-
world business processes from process data.

The algorithm presented in [14] can discover micro-level agent models and
link them to the input macro-level business process model. This algorithm is
based on the hierarchical Markov model. It can be considered for implementa-
tion of the enhance ASM activity. The framework for solving the probabilistic
goal recognition problem presented in [29] can be used to discover models of
rational and irrational behaviors of agents. The obtained models can be used
for modeling autonomous aspects of agent behavior. Data Mining methods can
be used to mine context models in multi-agent interactions [37]. These methods
can be reused to implement the discover and enhance ASM activities to con-
struct context-aware environment sub-models of MASs. Mahdi and Lotfi pro-
pose algorithms for discovering agent interaction protocols and organizational
structures in business processes [26]. The agent interaction models discovered
using the proposed algorithms should be augmented with agent-environment
interactions and individual agent behavior sub-models to fully represent agents
in MAS models. Finally, the alpha-algorithm for process discovery has been
used to mine a Petri net model of an individual agent in a robotic MAS [28].
The algorithm takes an event log of one robotic agent and produces a Petri net
model of that agent. This approach can be used as part of an ASM Framework
implementation for constructing sub-models of individual agents.

While the existing works provide useful ideas and techniques for mining
parts of MAS models, they do not allow, neither individually nor collectively,
implementing the ASM framework described in Section 4.2.

6 Conclusion

This paper presents a vision of Agent System Mining (ASM) as an extension of
Process Mining grounded in the Agent-Based Modeling paradigm. ASM inter-
prets business process data from an agent-based micro-level perspective. From
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this perspective, a business process is implicitly induced by interactions of multi-
ple autonomous distributed agents without an explicit definition of a macro-level
control flow model. As a motivation for ASM, we provide an example of min-
ing an order delivery business process, demonstrating how Multi-Agent System
(MAS) models can address the problem of “spaghetti process models” related
to visualizing and understanding complex macro-level control flow models gen-
erated by traditional Process Mining techniques. To position ASM in the MAS
modeling lifecycle, we introduce ASM Framework that maps ASM activities
and artifacts to MAS modeling lifecycle phases and tasks. In addition, we dis-
cuss ASM benefits and challenges related to the implementation of the ASM
activities.

The future research in ASM can be organized around three areas: meta-
models and formalisms suitable for representing MAS models discovered from
business process data, ASM algorithms for discovering and enhancing executable
MAS models of business processes, and techniques for assessing the quality of
MAS models discovered by the ASM algorithms. Further analysis of ASM ben-
efits for different application domains and industry sectors will validate ASM
Framework and inform additional research directions.

Acknowledgements. This research was supported by the Australian Com-
monwealth Government through an “Australian Government Research Training
Program Scholarship.”

References

[1] M.B. Ayhan, M.E. Aydin, and E. Öztemel. A multi-agent based approach
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