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Visual Drift Detection for Event Sequence Data
of Business Processes

Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem Polyvyanyy

Abstract—Event sequence data is increasingly available in various application domains, such as business process management,
software engineering, or medical pathways. Processes in these domains are typically represented as process diagrams or flow charts. So
far, various techniques have been developed for automatically generating such diagrams from event sequence data. An open challenge is
the visual analysis of drift phenomena when processes change over time. In this paper, we address this research gap. Our contribution is
a system for fine-granular process drift detection and corresponding visualizations for event logs of executed business processes. We
evaluated our system both on synthetic and real-world data. On synthetic logs, we achieved an average F-score of 0.96 and outperformed
all the state-of-the-art methods. On real-world logs, we identified all types of process drifts in a comprehensive manner. Finally, we
conducted a user study highlighting that our visualizations are easy to use and useful as perceived by process mining experts. In this way,
our work contributes to research on process mining, event sequence analysis, and visualization of temporal data.

Index Terms—Sequence data, Visualization, Temporal data, Process mining, Process drifts, Declarative process models.

1 INTRODUCTION

Event sequence data is increasingly available in various
application domains and the design of suitable analysis
techniques is an ongoing research challenge. Research by
Aigner et al. [2], [3], provides an excellent overview of
time-oriented visualizations concluding that most available
techniques plot temporal data in a continuous way. Examples
of this visualization type are the Time Line Browser [4],
History Flow [5], ThemeRiver [6], and TimeNets [7]. Various
domains such as business process management, software
engineering, and medical pathways use process diagrams,
flow charts, and similar models to describe temporal relations
between discrete activities and events [8]. Techniques from
process mining are concerned with generating such visual
models from event sequence data [9].

Business process management is a discipline concerned
with organizing activities and events in an efficient and effec-
tive way [10]. To this end, business processes are analyzed,
designed, implemented, and monitored. A business process
in this context can be a travel request or an online order of
a textbook. Event sequence data plays an important role in
process analysis. An individual case of a textbook order by
the first author on the 4th of April is also referred to as a
trace, and a multiset of such traces is called an event log. In
process mining, process discovery algorithms have proven to
be highly effective in generating process models from event
logs of stable behavior [9]. However, many processes are not
stable but change over time. In data mining, such change
over time is called drift. Furthermore, to the detriment of
process analysts, drift is a concept that has been addressed
only to a limited extent in BPM.
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Recent works have focused on integrating ideas from
research on concept drift into process mining [11], [12],
[13], [14], [15]. The arguably most advanced technique is
proposed in [16], where Maaradji et al. present a framework
for detecting process drifts based on tracking behavioral
relations over time using statistical tests. A strength of this
approach is its statistical soundness and ability to identify
a rich set of drifts, making it a suitable tool for validating
if an intervention at a known point in time has resulted in
an assumed change of behavior. However, a key challenge
remains. In practice, the existence of different types of drifts
in a business process is not known beforehand, and analysts
are interested in distinguishing what has and what has not
changed over time. This need calls for a more fine-granular
analysis as compared to what recent techniques have offered.

In this paper, we present a design study [17] on how
to support process analysts with visualizations to better
understand drift phenomena [18] associated with business
processes. Specifically, we develop a novel system for process
drift detection, named Visual Drift Detection (VDD), which
addresses the identified research gap. Our system aims to
support process analysts by facilitating the visual analysis [19]
of process drifts. Figure 1 schematically illustrates the main
visual cues it offers to the users to this end. We integrate var-
ious formal concepts grounded in the rigor of temporal logic,
DECLARE constraints [20], [21] and time series analysis [22].
Key strengths of our system are clustering of declarative
behavioral constraints that exhibit similar trends of changes
over time and automatic detection of changes in terms of
drift points. For each of these analysis steps, we provide
different visualizations, including the Extended Directly-
Follows Graph, the Drift Map, Drift Charts, and various
measures to indicate the type of drift. These features allow
us to detect and explain drifts that would otherwise remain
undetected by existing techniques. The paper presents an
evaluation that demonstrates these capabilities.

The remainder of the paper is structured as follows.
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Figure 1: The Visual Drift Detection (VDD) approach visualization (here using as input the Sepsis event log [1]). In the center,
a Drift Map shows the degree to which clusters of behaviour change over time (on the x axis). The intensity of the color
indicates the confidence associated to the behavioral constraints (on the y axis). Vertical dashed lines signal drift points.
On the top-right corner, a Drift Chart depicts the oscillations of the confidence values that determine the drift points of a
cluster. On the bottom-right corner, Drift Metrics document the detected erratic behavior. On the left-hand side, the extended

Directly Follows Graph illustrates the behavior of the cluster as a workflow diagram.

Section 2 illustrates the problem of process drift detection and
formulates five requirements for its analysis. Then, Section 3
states the preliminaries. Section 4 presents the concepts of our
drift detection system, while Section 5 evaluates the system
using benchmark data and a user study. Finally, Section 6
summarizes the results and concludes with an outlook on
future research.

2 PROCESS DRIFT ANALYSIS

In this section, we discuss the analysis of drift phenomena for
business processes. First, Section 2.1 illustrates an example of
drift in a business process. Section 2.2 then characterizes
the specific analysis task of the analysts and identifies
requirements for supporting process analysts for visually
inspecting drift.

21

Business processes are collections of inter-related events and
activities involving a number of actors and objects [10]. They
define the steps by which products and services are provided
to customers. Arguably, any work or business operation
can be understood as a business process, though more
specific terms are used in different industries: manufacturing
processes, clinical pathways, service provisioning, or supply
chains [23]. Analyzing and improving these processes is
difficult due to their complexity and their division of labour
with separate agents being responsible for different activities.

As an example of a business process, consider the log
of a hospital on handling sepsis patients [1] displayed by
our system in Fig. 1. The diagram on the left-hand side is
a Directly-Follows Graph showing potential sequences of
the process. One individual patient is a case of this process,
and his or her sequences through the process is a trace. The

Drift in Business Processes

process typically starts with the registration and admission of
the patient with ER Registration. A first diagnosis is performed
with the ER Triage activity followed by an ER Sepsis Triage.
The patients suspected of sepsis are treated with infusions of
antibiotics and intravenous liquid (IV Antibiotics and IV liquid).
The majority of the patients are admitted to the normal care
ward (Admission NC), while some are admitted to intensive
care (Admission IC). In some cases, the admission type changes
during the treatment process. At the end of the treatment,
and due to different reasons, patients are dispatched (with
Release A-D activities).

The hospital is now interested in this question: Has
the process of treating sepsis patients changed over time, and
which parts of it now work differently than in the past? The
described problem is typical for many process domains. The
objective is to explain the change of the process behavior in
a dynamically changing non-stationary environment based
on some hidden context [24]. The data mining and machine
learning community use the term concept drift to refer to any
change of the conditional distribution of the output given
a specific input. Corresponding techniques for concept drift
detection identify drift in data collections, either in an online
or offline manner, with applications in prediction and fraud
detection [25].

Recently, the availability of event logs of business pro-
cesses has inspired various process mining techniques [9].
Those techniques mainly support process monitoring and
analysis. Classical process mining techniques have implicitly
assumed that logs are not sensitive to time in terms of sys-
tematic change [9]. For instance, sampling-based techniques
explicitly build on this assumption for generating a process
model with a subset of the event log data [26]. A significant
challenge for adopting concept drift for process mining is to
represent behavior in a time-dependent way. The approach
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Figure 2: Different types of drifts, cf. Fig. 2 in [24].

reported in [16] uses causal dependencies and tracks them
over time windows. Support for more detailed analysis is
limited so far. Specifically relevant is the question if a process
show concept drift and which of its activities relate to it.

Prior research on data mining has described different
archetypes of drift (see Fig. 2). We use the example of the
sepsis process to illustrate the potential causes of drifts. A
sudden drift is typically caused by an intervention. A new
guideline could eliminate the need to conduct triage in two
steps, as it is currently done. As a result, we would not see
second triage events in our log in the future. An incremental
drift might result from a stepwise introduction of a new type
of infusion. A gradual drift may stem from a new guideline
to consider intensive care already for patients with less
critical symptoms. Finally, a reoccurring drift might result
from specific measures taken in the holiday season from July
to August when inflammations are more likely due to warm
weather. Existing process mining techniques support these
types of drifts partially.

The following are four illustrative cases from the sepsis
process:
10 Jan. 2014: {ER Registration, ER Triage,

IV Antibiotics, Release A)
15 Jan. 2014: {ER Registration, ER Triage,
IV Antibiotics, Release A)

ER Sepsis Triage,

ER Sepsis Triage,

04 Feb. 2014: {ER Registration, ER Triage, IV Antibiotics,
Release A)

06 Feb. 2014: {ER Registration, ER Triage, IV Antibiotics,
Release A)

We observe a sudden drift here due to the introduction
of a new guideline. After 04 Feb. 2014, the sepsis triage is
integrated with the general triage step. Therefore, in formal
terms, from case 3 onwards, the behavioral rule that the sep-
sis triage occurs after the general triage abruptly decreases in
the number and share of observations. Several rule languages
with a rich spectrum of behavioral constraints have been pro-
posed [27], [28], [29]. In rule languages based on linear tem-
poral logic such as DECLARE, we can formally state that the
rule ALTERNATERESPONSE(ER Triage, ER Sepsis Triage) drops
in confidence. We will make use of such rules in our
technique.

2.2 Analysis Tasks of Process Analysts

We frame our design study in the tasks of process analysts.
Process analysts are typically in charge of steering process
improvement projects, gathering information about current
process performance, modeling the process as-is, analyzing
weaknesses and changes over time, developing redesign
options, and bringing them into implementation [10]. The
analysis of changes based on the evidence brought by event

Table 1: Process drift detection in process mining.

Approach Rl R2 R3 R4 R5
ProDrift [15], [16] + 4/- - -

TPCDD [14] + - - -

Process Trees [31] + - - - +
Performance Spectra [11] - - +/- .
Comparative Trc. Clustering [12] - - +
Graph Metrics On Proc.Graphs [13] + - - + +
Eventpad [32] + - - P
VIDX [33] Y A
Eventthread3 [34] - - + + +
VDD (this paper) + + + + +

logs entails the challenge of detecting and understanding
process drifts. Such a complex task with data requires
interactive support to explore and investigate various aspects
of the information source at hand [9]. Based on the experience
gained in projects with industry partners, we identified five
requirements for process drift analysis [30]:

R1. Identify drifts: The points at which a business process
undergoes drifts should be identified based on precise
criteria;

Categorize drifts: Process drifts should be categorized
according to their types;

Drill down and roll up analysis: Process drifts should
be characterized at different levels of granularity, e.g.,
drifts that concern the entire process or only its parts;
Quantitative analysis: Process drifts should be associ-
ated with a degree of change, a measure that quantifies
to which extent the drift entails a change in the process;
Qualitative analysis: Process drifts should convey
changes in a business process to process analysts ef-
fectively.

R2.

R3.

R4.

R5.

Table 1 provides an overview of the state-of-the-art
methods for process drift analysis with reference to the five
listed requirements. Notice that collectively these methods
address (at least partially) all the requirements, whereas each
method addresses only a subset. In particular, R2 and R3
remain mostly open challenges.

Approaches like ProDrift [16] and Graph Metrics on
Process Graphs [13] put an emphasis on requirement R1.
The evaluation of ProDrift in [16] shows that sudden and
gradual drifts are found accurately, thus partly addressing
requirement R2, although with a reported high sensitivity to
the choice of method parameters. ProDrift relies on the au-
tomatic detection of changes in business process executions,
which are analyzed based on causal dependency relations
studied in process mining [35]. The Tsinghua Process Concept
Drift Detection approach (TPCDD) [14] uses two kinds of
behavioral relationships: direct succession and weak order.
The approach computes those relations on every trace, so as
to later identify the change points with the help of clustering.
The only type of drift that TPCDD detects is sudden drift.

The other approaches emphasize requirement R5. The
approach based on Process Trees [31] uses ProDrift for
drift detection, and aims at explaining how sudden drifts
influence process behavior. To this end, process trees are built
for pre-drift and post-drift sections of the log and used to
explain the change. The Performance Spectra approach [11]
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focuses on drifts that show seasonality. The technique filters
the control-flow and visualizes identified flow patterns. It
is evaluated against a real-world log, in which recorded
business processes show year-to-year seasonality. A strength
of the Comparative Trace Clustering approach [12] is its
ability to include non-control-flow characteristics in the
analysis. Based on these characteristics, it partitions and
clusters the log. Then, the differences between the clusters
indicate the quantitative change in the business processes,
which addresses requirement R4. The Graph Metrics on
Process Graphs approach [13] discovers a first model, called
a reference, using the Heuristic Miner on a section of the
log [9]. Then, it discovers models for other sections of the log
and uses graph metrics to compare them with the reference
model. The technique interprets significant differences in the
metrics as drifts. The reference model and detection windows
get updated once a drift is detected.

Works that emphasize the visualization analysis of drifts
for event sequence data mainly approach change as a type
of anomaly. Eventpad [32] allows the users to import event
sequences for interactive exploration by filtering the visual
representation using constraints and regular expressions.
The overview provided by the system helps to uncover
change patterns. Eventpad supports the requirements R1
and R5. The ViDX system [33] offers an interactive visu-
alization system to discover seasonal changes. Note that
Performance Spectra [11] build on similar design ideas. The
user of the ViDX system can select the sequences that are
considered normal and the system highlights the sequences
that deviate from this norm. The system also supports a
calendar view, which helps to identify where drifts happen
in the timeline. The system supports requirements R1, R5,
and partially R3 and R4. The EventThread3 system [34] relies
on an unsupervised anomaly detection algorithm and the
interactive visualization system to uncover changes in event
sequence data. Seven connected views allow the analyst
to inspect the flow-based overview of the event sequence
data with additional information on anomalous sequences.
The system supports the thorough analysis of anomalous
behavior (requirements R3, R4 , and R5) but neither identifies
the exact point in time in which the change of behavior
happened, nor classifies the changes.

Beyond these specific works on process drift, there
are numerous related works on the visualization of event
sequence data [36], [37]. The summarization of event sequence
data can be supported by visual representations of different
types. Chen et al. [38] use several connected views including
a raw sequence representation and an abstraction based
on the minimum description length principle. The work
by Gou et al. [39] splits the event data into threads and
stages. In this way, they summarize complex and long event
sequences. Zhang et al. [40] combine the raw event sequence
visual representation with annotated line plots together
with custom infographics emphasizing use-case related
characteristics. Wongsuphasawat et al. [41] introduce an
interactive event sequence overview system called LifeFlow,
which builds upon the Icicle plot and represents temporal
spacing within event sequences. Monroe et al. [42] present
the event sequence analysis system EventFlow, which offers
different types of aggregation and simplification. Law et
al. [43] introduce an interactive system that supports flexible
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analysis of event sequences by combining querying and
mining. Wongsuphasawat and Gotz [44] extend the directed
graph event sequence representation with colored vertical
rectangles used as the transitions between events. Tanahashi
and Ma [45] describe design considerations for visualizing
event sequence data. This work concerns the usage of color
and layout when designing visualizations. Other papers
explain how to effectively visualize the alignment of sequences.
Albers et al. [46] present a hierarchically structured visual
representation for genome alignments. Cappers et al. [47]
visualize event sequences aligned by user-defined temporal
rules. Malik et al. [48] introduce the cohort comparison
system CoCo, which uses automated statistics together with
a user interface for exploring differences between datasets.
Zhao et al. [49] introduce a novel visualization system based
on the matrices arranged in a zig-zagging pattern that allows
for less overlapping edges than common Sankey based
visualizations. Xu et al. [33] achieve visualization of changes
and drifts in event sequence data through compound views
consisting of Marey’s graph, line plots, bar charts, calendar
views, and custom infographics.

This discussion, summarized in Table 1, witnesses that
none of the state-of-the-art methods covers the full set of the
five requirements of visualizing process drifts. The approach
described in the following addresses this research gap.

3 PRELIMINARIES

This section defines the formal preliminaries of our approach.
Section 3.1 gives an overview of the event log, the main
input data type used in process mining. Sections 3.2 and 3.3
describe process representation languages: the former in-
troduces the directly-follows graphs for procedural models,
and the latter illustrates the representation of the process.
Sections 3.3 and 3.4 discuss the DECLARE specification and
the techniques to discover and simplify those models from
event logs, respectively. Section 3.5 describes time series
clustering, and Section 3.6 illustrates change point detection
methods, which are the main instruments of our approach.

3.1

Event logs capture actual execution sequences of business
processes. They represent the input for process mining
techniques. An event log L (log for short) is a collection
of recorded traces that correspond to process enactments.
In this paper, we abstract the set of activities of a process
as a finite non-empty alphabet ¥ = {a,b,c,...}. Events
record the execution of activities, typically indicating the
activity and the completion timestamp. A trace o is a finite
sequence of events. For the sake of simplicity, we shall
denote traces by the sequence of activities they relate to,
a; € 0,1 < i < n, sorted by their timestamp. In the following
examples, we also resort to the string-representation of
traces (i.e., 0 = ajasz---a,) defined over X. Case 1 of the
sepsis process from Section 2.1 is an example of a trace. An
event log L is a multiset of traces, as the same trace can
be repeated multiple times in the same log: denoting the
multiplicity m > 0 as the exponent of the trace, we have that
L ={o",052,...,00"} (if m; =0 forsomel <i<N
we shall simply omit ¢;). The size of the log is defined as

Event log
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|L| = Zf\;l m; (i.e., the multiplicity of the multiset). Cases
1-4 of the sepsis process in Section 2.1 constitute an example
of event log of size 4. The size of thg sepsis log is 1050 [1].
Asub-log L' € Lisalog L' = {0]"",05,...,0n"} such
that m; < m, for all 1 <4 < N. A log consisting of cases 1-3
from the example log L in Section 2.1 is a sub-log of L.

3.2 Directly-Follows Graph

The first output that process mining tools generate for provid-
ing an overview of a business process is the Directly-Follows
Graph (DFG, also referred to as process map). Given an event
log L, a DFG is a tuple G(L) = (Ap, 1, Agtert, Asnd) [9],
[10]. In a DFG, each node in set A, represents an activity
class, and each arc denotes a tuple in the directly-follows
relation 1, discovered from the event log. Figure 1 shows
a DFG of the sepsis log on the left-hand side. For instance,
for a specific patient we observe that the ER Triage activity is
followed by ER Sepsis Triage, resulting into a corresponding
tuple in the directly-follows relation. Each arc is annotated
with a number representing frequency of occurrence in
the event log to indicate the importance of that transition
between tasks in the process. G(L) explicitly encodes start
and end of the discovered process with sets of activities
Agtart - A¢nd respectively. DFGs are known to be simple and
comprehensive [50], [51]. Indeed, they are used as a visual
overview for processes both in open-source and commercial
process mining tools like Fluxicon Disco’ and Celonis?, and
pm4py [52]. They are also used as an intermediate data
structure by several process discovery algorithms [50], [53].

As shown in [54], the complexity of DFG mining is linear
in the number of traces (O(|L|)) and quadratic in the number
of activities (O(|%]?)).

3.3 DECLARE modeling and mining

Fine-granular behavior of a process can be represented
in a declarative way. A declarative process specification
represents this behavior by means of constraints, i.e., temporal
rules that specify the conditions under which activities may,
must, or cannot be executed. In this paper, we focus on
DECLARE, a well-known standard for declarative process
modeling [20] based on linear temporal logic. DECLARE
provides a repertoire of template constraints [55], [56]).
Examples of DECLARE constraints are RESPONSE(a, b) and
CHAINPRECEDENCE(b, ¢). The former constraint applies the
RESPONSE template on tasks a and b, and states that if a
occurs then b must occur later on within the same trace.
In this case, a is named activation, because it is mentioned
in the if-clause, thus triggering the constraint, whereas b
is named target, as it is in the consequence-clause [56].
CHAINPRECEDENCE(b, ¢) asserts that if ¢ (the activation)
occurs, then b (the target) must have occurred immediately
before. Given an alphabet of activities ¥, we denote the
number of all possible constraints that derive from the
application of DECLARE templates to all activities in ¥ as
F#ens © O(X?) [56]. For the sepsis log, #cns = 3424. Table 2
shows some of the templates of the DECLARE repertoire,

1. https:/ /fluxicon.com/disco/
2. https:/ /www.celonis.com/
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together with the examples of traces that satisfy (v) or violate
(x) them.

Declarative process mining tools can measure to what
degree constraints hold true in a given event log [57]. To that
end, diverse measures have been introduced [58]. Among
them, we consider here support and confidence [21]. Their
values range from 0 to 1. In [21], the support of a constraint
is measured as the ratio of times that the event is triggered
and satisfied over the number of activations. Let us consider
the following example event log: L = {0}, 03,02}, having
o1 = baabc, 03 = bee, and o3 = beba. The size of the log is
441+ 2 = 7. The activations of RESPONSE(a, b) that satisfy
the constraint amount to 8 because two a’s occur in o; that
are eventually followed by an occurrence of b, and o; has
multiplicity 4 in the event log. The total amount of the con-
straint activations in L is 10 (see the violating occurrence of a
in 03). The support thus is 0.8. By the same line of reasoning,
the support of CHAINPRECEDENCE(b, c) is & = 0.875 (notice
that in o5 only one of the two occurrences of c satisfies the
constraint). To take into account the frequency with which
constraints are triggered, confidence scales support by the
ratio of traces in which the activation occurs at least once.
Therefore, the confidence of RESPONSE(a, b) is 0.8 x g ~ 0.69
because a does not occur in 05. As b occurs in all traces, the
confidence of CHAINPRECEDENCE(b, c) is 0.875.

As shown in [21], [59], the computation of constraint
measures on an event log L is performed efficiently as the
mining algorithms have a complexity that is (i) linear with
respect to the number of traces, O(|L|), (ii) quadratic to the
total number of events, O(Y, _; |o|?), and (iii) linear to the
number of constraints, O(#cns), hence quadratic with respect
to the number of activities in the event log as #.,s € O(3?).
This complexity corresponds to that of mining Directly-
Follows Graph (DFG), as previously discussed in Section 3.2.

3.4 Subsumption of DECLARE rules

For one event log, there are typically a large amount of
DECLARE constraints. Efficient abstraction can be achieved
by pruning out constraints that are subsumed by others.
To this end, we outline here the concept of subsumption for
declarative constraints, and its impact on the support and
confidence measures. For technical details, see [56]. As it can
be noticed in Table 2, CHAINPRECEDENCE imposes a stricter
rule on the process execution than ALTERNATEPRECEDENCE,
which in turn exerts a stricter rule than PRECEDENCE:
for example, C' = PRECEDENCE(b,c) requires that every
occurrence of ¢ is preceded at some point before by b;
C' = ALTERNATEPRECEDENCE(Db, c) adds to the statement
of C that no other ¢ can recur between ¢ and the preceding oc-
currence of b; on top of that, C” = CHAINPRECEDENCE(b, ¢)
excludes that any other task between ¢ and the preceding
b occurs (not just c). As a consequence, every trace that
satisfies C” is also compliant with C”, and every trace that
satisfies the latter, in turn, complies with C. For example,
let L' = {0%,0},02} be an event log in which o4 = bccabe,
o5 = bacabc, and og = bcaabc. o4 satisfies C' but does not
comply with either of C’ and C”. o} satisfies C' and C” but
not C”. Finally, o¢ satisfies C, C' and C”. Notice that it is not
possible to find an example of trace satisfying, e.g., C and
C" but not C’. We say that C” is subsumed by C” and C” is
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Table 2: Example DECLARE constraints.

Constraint Explanation Examples

ATMOSTONE(a) If a occurs, then it occurs at most once v'bee v'bcac xbcaac  xbcacaa

RESPONSE(a, b) If a occurs, then b occurs eventually after a V'baabc  v'bce xbcba X caac

ALTERNATERESPONSE(a, b) If a occurs, then b occurs eventually afterwards, and no othera v'cacb ~ v'abcacb ~ xcaacb  xbacacb
recurs in between

CHAINRESPONSE(a, b) If a occurs, then b occurs immediately afterwards Vcabb  V'abcab x cach x bca

PRECEDENCE(a, b) If b occurs, then a must have occurred before V'cachb  v'acc x ccbb x bacc

ALTERNATEPRECEDENCE(a,b)  If b occurs, then a must have occurred before and no other b v'cacba v'abcaacb  xcacbba X abbabcb
recurs in between

CHAINPRECEDENCE(a, b) If b occurs, then a occurs immediately beforehand Vabca  vabaabc  xbca x baach

NOTSUCCESSION(a, b) a occurs if and only if b does not occur afterwards v'bbcaa  v'cbbca xaacbb  xabb

’ PRECEDENCE(, y) ‘

f

’ ALTERNATEPRECEDENCE(z, y) ‘

i

’ CHAINPRECEDENCE(z, y) ‘

Figure 3: The subsumption relation restricted to
CHAINPRECEDENCE(x,y), ALTERNATEPRECEDENCE(Z, ),
and PRECEDENCE(z, y)

subsumed by C. Subsumption enjoys the properties of tran-
sitivity, reflexivity, and anti-symmetry, thus being a partial
order. The repertoire of DECLARE constitutes a subsumption
hierarchy. Figure 3 depicts the fragment of subsumption
hierarchy related to the aforementioned constraints as an
is-a relation. Interestingly, the subsumption hierarchy among
constraints induces a partial order also on the sub-multisets
of traces in an event log, the homomorphism being the
relation with respect to constraints: considering the example
above, {03, 0}, 0} satisfies C, {0}, 08} satisfies C’, and {0}
satisfies C”. Therefore, by definition, support and confidence
are monotonically non-decreasing along the subsumption
hierarchy [56]. On L’, e.g., we have that the support of C”, C’,
and C is 0.71, 0.85, and 1.0, respectively. Their confidence
coincides with support as ¢ (the activation) occurs in all traces,
for simplicity. We shall take advantage of this property to
reduce the number of constraints to represent the behavior
of identified clusters.

An array of algorithms have been introduced to auto-
matically detect and remove redundant constraints. The
techniques described in [21], [60] resort to auxiliary data
structures that are heuristically optimized for the repertoire
of DECLARE, and require linear time with respect to the
number of constraints, O(#cns). In [56] a general and
more effective approach for declarative languages has been
proposed. It first creates a priority list for the elimination
of possibly redundant constraints (O(#cns * 10gs(#ens)))
and then linearly scans that list for redundancy checking.
The check is based on the incremental comparison of the
finite-state automata underlying the process model and the
constraints. We resort to techniques optimized for DECLARE
as a pre-processing phase pruning the vast majority of
redundancies and operate with the small-sized automata of
DECLARE constraints for the final removal of redundancies.

3.5 Time series clustering

Plotting the confidence and support of different DECLARE
constraints over time produces a time series. A time series is
a sequence of ordered data points (t1,ts,...,ts) = T € R?
consisting of d € Nt real values. The illustrations of drift
types in Figure 2 are in essence time series. A multivariate time
series is a set of n € NT time series D = {11, T5,...,T,}. We
assume a multivariate time series to be piece-wise stationary
except for its change points.

In our approach, we take advantage of the time series
clustering algorithms. Time series clustering is an unsuper-
vised data mining technique for organizing data points into
groups based on their similarity [61]. The objective is to
maximize data similarity within clusters and minimize it
across clusters. More specifically, the time-series clustering is
the process of partitioning D into non-overlapping clusters
of multivariate time series, C = {C},Cs,...,C,,} < 2P,
with C; € Dand 1 <m < n,foreachisuchthatl <i<m,
such that homogeneous time series are grouped together
based on a similarity measure. A similarity measure sim(T,T")
represents the distance between two time series T' and 7"
as a non-negative number. Time-series clustering is often
used as a subroutine of other more complex algorithms
and is employed as a standard tool in data science for
anomaly detection, character recognition, pattern discovery,
visualization of time series [61]. As discussed in [61] the
hierarchical clustering computation is polynomial in the
number of time series (which, in turn, is proportional to the
number of constraints), hence O(|D|?) = O(#2..).

3.6 Change point detection

Change point detection is a technique for identifying the
points in which multivariate time series exhibit changes in
their values [22]. Let Dj denote all elements of D at position
j,ie, DI = {T{ TJ,...,T7}, where T7 is a j-th element
of time series T'. The objective of change point detection
algorithms is to find k£ € N* changes in D, where k is
previously unknown. Every element D’ for 0 < j < k
is a point at which the values of the time series undergo
significant changes. Change points are often represented as
vertical lines in time series charts.

To detect change points, the search algorithms require a
cost function and a penalty parameter as inputs. The former
describes how homogeneous the time series is. It is chosen
in a way that its value is high if the time series contains
many change points and low otherwise. The latter is needed
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to constrain the search depth. The supplied penalty should
strike a good balance between finding too many change
points and not finding any significant ones. Change point
detection is a technique commonly used in signal processing
and, more in general, for the analysis of dynamic systems
that are subject to changes [22]. In the worst case, the change
point detection algorithm has a quadratic performance [62]
in the number of time series in the cluster O(|D|?) = (#2,,)-

4 A SYSTEM FOR VISUAL DRIFT DETECTION

In this section, we introduce the VDD system. Its overall
design idea is to cut the log into time windows and compute
the confidence of behavioral constraints on the traces within
those windows, so that the results can be visualized over
time. Figure 4 illustrates the steps of VDD for generating the
visualizations.

Step 1: Mining Directly-Follows Graph as an overview. In
the first step, we mine a DFG from an input event log to get
an overview of the behavior captured in the log.

Step 2: Mining constraints windows. Concurrently with the
first step, we split the log into sub-logs. From each sub-log,
we mine the set of DECLARE constraints and compute their
confidence. As a result, we obtain several time series.

Step 3: Clustering Time Series. In this step, we cluster those
time series into groups of constraints that exhibit similar
confidence trends (henceforth, behavior clusters).

Step 4: Visualizing Drifts. In this step, we detect drift
points for the whole log and each cluster separately. We
plot drift points in Drift Maps and Drift Charts to effectively
communicate the drifts to the user.

Step 5: Detecting Drift Types. In this step, we use an array
of methods to further analyze drift types. We employ multi-
variate time series change point detection algorithms to spot
sudden drifts in both the entire set of constraints and in each
cluster. We use stationarity analysis to determine if clusters
exhibit gradual drifts and autocorrelation plots to check if
reoccurring drifts are present. While Step 4 is concerned with
estimating the extent of drift presence, Step 5 is intended to
show and explain those drifts.

Step 6: Understanding drift behavior. In the final step, we
present semantic information on the identified drifts. Step 6
produces a minimized list of constraints and a projection of
these constraints onto the Directly-Follows Graph to explain
the behavior in the drift cluster.

In the following, we detail these steps.

4.1

The first step takes as input a log L and produces the Directly-
Follows Graph (DFG). The DFG includes an arc a S difa
sub-sequence {a, a’) is observed in any traces of the log (n
indicates the total number of such observations). The process
analyst typically starts the analysis by exploring the paths of
the DFG.

Mining Directly-Follows Graph as an Overview

4.2 Mining constraints windows

Performed in parallel with the mining of the DFG, this step
takes as input a log L and two parameters (wingi,. and
Wingtep)- It returns a multivariate time series D based on the
confidence of mined DECLARE constraints.

7

In this step, we first sort the traces in the event log L
by the timestamp of their start events. Then, we extract a
sub-log from L as a window of size wing,. € NT, with
1 < wingize < |L]. Next, we shift the sub-log window by
a given step (Wingep € NT, with 1 < wingep, < Wilgize).
Notice that we have sliding windows if wingep < Wingje and
tumbling windows if Wingep = Wingize. Thus, the number of
|L|—wingjze —Wingtep

produced sub-logs is equal to: #in = l

Wilgte
Having wing;,. set to 50 and winggep set to 25, #win ;s 39 for
the sepsis log.

For every sub-log L; € L thus formed (1 < j < #win),
we check all possible DECLARE constraints that stem from
the activities alphabet of the log, amounting to #.,s (see
Section 3.3). For each constraint ¢ € 1..#.,s, Wwe compute
its confidence over the sub-log L;, namely Conf; ; € [0, 1].
This generates a time series T; = (Conf; 1,...,Conf; #.,.) €
[0,1]#win for every constraint i. In other words, every
time series T; describes the confidence of all the DECLARE
constraints discovered in the i-th window of the event
log. The multivariate time series D = {T1,T5,..., T4, .}
encompasses the full spectrum of all constraints. Next, we
detail the steps of slicing the DECLARE constraints and
explaining the drifts.

4.3 Clustering Time Series

The third step processes the previously generated multi-
variate time series of DECLARE constraints D to derive a
set C of clusters exhibiting similar confidence trends. For
instance, if we observe confidence values over five time win-
dows for RESPONSE(a,b) as (0.2,0.8,0.9,0.8,0.9) and for
CHAINPRECEDENCE(b, ¢c) we have (0.23,0.8,0.9,0.9,0.9), it
is likely that the two time series for these constraints might
end up in the same cluster due to their small difference.
The aim of this step is to identify drift points at a fine-
granular level. To this end, we use time-series clustering
techniques [61] for grouping together similarly changing
pockets of behavior of the process. Each time series describes
how one constraint changes its confidence over time. By
clustering, we find all the time series that share similar trends
of values, hence, we find all similarly changing constraints.
We use hierarchical clustering, as it is reportedly one of the
most suitable algorithms when the number of clusters is
unknown [61]. As a result, we obtain a partition of the
multivariate time series of DECLARE constraint confidence
values into behavior clusters.

4.4 \Visualizing Drifts

The fourth step generates visual representations of drifts.
To this end, we construct a graphical representation called
Drift Map. Drift Maps depict clusters and their constraints’
confidence measure evolution along with the time series and
their drift points. We allow the user to drill down into every
single cluster and its drifts using dedicated diagrams that
we call Drift Charts.

Drift Maps (see Fig. 1, in the center) plot all drifts on a
two-dimensional canvas. The visual representation we adopt
is inspired by [19]. The x-axis is the time axis, while every
constraint corresponds to a point on the y-axis. We add
vertical lines to mark the identified change points, i.e., drift
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Figure 4: The Visual Drift Detection approach.

points, and horizontal lines to separate clusters. Constraints
are sorted by the similarity of the confidence trends. The
values of the time series are represented through the plasma
color-blind friendly color map [19] from blue (low peak) to
yellow (high peak). To analyze the time-dependent trend of
specific clusters, we build Drift Charts (see Fig. 1, on the
right). They have time on the x-axis and average confidence
of the constraints in the cluster on the y-axis. We add vertical
lines as in Drift Maps.

Drift Maps offer users a global overview of the clusters
and the process drifts. Drift Charts allow for a visual
categorization of the drifts according to the classification
introduced in [24], as we explain next. These visualizations
help the analyst determine if drifts exist at all, which kind of
pattern they exhibit over time, and which kind of behavior
is stable or drifting.

We use autocorrelation plots to identify the process
changes that follow a seasonal pattern, namely the reoccuring
concept drift. Autocorrelation is determined by comparing
a time series with the copy of itself with a lag (delay) of
some size [63]. Autocorrelation plots are useful to discover
seasonality in the data. The vertical axis in the plot shows
the correlation coefficient between elements. The horizontal
axis shows the size of the lag between the time series and
its copy, refer to Fig. 5. The cosine-wave shaped graph
in Fig. 5(a) shows a high seasonality as the peaks share the
same value, while the x-axis indicates the steps needed for the
season to reoccur. The plot exhibits a seasonal behavior that
changes every 10 steps from positive to negative correlation.
This means that the values in the time series in step 0
are the opposite of those in step 10 and match those in
step 20. Figure 5(b), in contrast, shows the graph with an
autocorrelation suggesting that the time series does not
exhibit seasonality. We determine whether the step lags
are significantly autocorrelated via statistical time series
analysis [63]. We classify only significant autocorrelations as
an evidence of reoccurring drifts.

4.5 Detecting Drift Types

After clustering the behavior of the log, we support the ana-
lyst with visual cues to understand and categorize the drifts
within behavior clusters. To this end, we calculate several
measures and display them in our visualization system (see
Drift Metrics in Fig. 1). These measures are introduced for
guiding the analyst in the analysis of the drifts. First, we aid
visual analysis by providing a ranking of drifts to assist in

Autocorrelation

T
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i

(a) Example of auto- (b) Example of low
correlated time series  autocorrelation

5 E)

Figure 5: Example of autocorrelation plots (sepsis log).

focusing on the interesting clusters and filter out outliers.
We do so by computing the erratic measure (Section 4.5.1).
Then, we categorize drifts using time series coefficients to
identify sudden drifts (Section 4.5.2). The sudden drifts are
highlighted on Drift Charts and summarized as a list of
timestamps indicating when they happened. We then report
on statistics that aids in the identification of incremental and
gradual drifts (Section 4.5.3).

4.5.1 Finding erratic behavior clusters

As we are interested in the extent to which the confidence
levels of constraints change over time, we calculate the
following measures.

First, to quantify the overall behavior change in the
log we introduce a measure we name range of confidence.
This measure shows what the average change of the value
of DECLARE constraint is in the whole log. We compute
this measure as follows. For all constraint time series
T, = (Tia,- -, Tiwing,. ), where 1 < i < |D|, we calculate
the difference between maximum and minimum values.
Then, we average the difference on the number of time
series:

3P max(T;) — min(T3)
- |D|

Second, to find the most interesting (erratic) behavior clusters,
we define a measure inspired by the idea of finding the length
of a poly-line in a plot. The rationale is that straight lines
denote a regular trend and have the shortest length, whilst
more irregular wavy curves evidence more behavior changes,
and their length is higher. We are, therefore, mostly interested
in long lines.

We compute our measure as follows. We calculate for all
constraints ¢ such that 1 < ¢ < #.y,s the Euclidean distance
d : [0,1] x [0,1] — Ry between consecutive values in the
time series T; = (T.1,. .., Ti wing,. ), i€, 6(T5 5, T; j41) for

Spread(D) (1)
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every j s.t. 1 < j < wingjze. For every time series T;, we thus
derive the overall measure A(7T;) = Z;.V;nf‘“_l T3, T 541)-
Thereupon, to measure how erratic a behavior cluster is, we
devise the erratic measure as follows:

IC|

EI‘I'atiC(C) = Z \/1 + (A(n) X #éwin)2 (2)
i=1

The most erratic behavior cluster has the highest Erratic
value.

4.5.2 Detect sudden drifts: Change point detection

For each cluster of constraints, we search for a set of sudden
drifts. This means that we look for a set of k € Nt change
points in the time series representing a drifting cluster. To
detect change points, we use the Pruned Exact Linear Time
(PELT) algorithm [62]. This algorithm performs an exact
search, but requires the input dataset to be of limited size.
Our setup is appropriate as, by design, the length of the
multivariate time-series is limited by the choice of parameters
Wilgize and wingep. Also, this algorithm is suitable for
cases in which the number of change points is unknown
a priori [22, p. 24], as in our case. We use the Kernel cost
function, detailed in [22], which is optimal for our technique,
and adopt the procedures described in [62] to identify the
optimal penalty value.

4.5.3 Detect incremental and gradual drifts: Stationarity

Stationarity is a statistical property of a time series indicating
that there is no clear tendency of change over time. It is useful
in the context of time series analysis to suggest the presence
of a pronounced trend. Here, we rely on parametric tests as a
rigorous way to detect non-stationarity. One of the most used
techniques are the Dickey-Fuller Test and the Augmented
Dickey-Fuller Test [64]. It tests the null hypothesis of the
presence of a unit root in the time series. If a time series has
a unit root, it shows a systematic trend that is unpredictable
and not stationary.

In particular, we use the Augmented Dickey-Fuller test to
detect incremental and gradual drifts. Those drifts represent a
slow change that goes undetected by change point detection
algorithms. If a time series is non-stationary, this signifies
that there is a trend in time series. Combined with the
analysis of the Drift Charts and the erratic measure, we
can differentiate between the incremental and gradual drift.
Non-stationary time series with a smoothly increasing Drift
Chart represent an incremental drift. A Drift Chart that shows
erratic behavior (or such that the erratic measure is large)
indicate a gradual drift. The highlighted cluster in Fig. 2 is
stationary as suggested by the Augmented Dickey-Fuller test.
This means there is no clear trend in the drift.

4.6 Understanding drift behavior

Sections 4.2 to 4.5 describe techniques that provide various
insights into drifts in the event log. However, knowing that a
drift exists and that it is of a certain type is not sufficient for
process analysis. Explanations are required to understand
the association between the evidenced drift points and the
change in the behavior that led to them. In this section, we
describe the two visual aids that we employ to explain that
association.

Table 3: Example of constraints present in the drift.

Cluster Constraint Activity 1  Activity 2
PRECEDENCE  Leucocytes Release D

1 PRECEDENCE CRP  Release D
PRECEDENCE ER Triage Release D

4.6.1 List of DECLARE constraints

The first report that we generate is the list of DECLARE
constraints that are associated with drifts of a selected cluster.
To this end, we use the DECLARE subsumption algorithm
described in Section 3.4. Reporting these constraints together
with the analysis and plots from previous sections help to
understand what part of the process behavior changes over
time and how.

Once a highly erratic drift with a seasonal behavior
is found, we look up the constraints associated with that
drift. For the sepsis case in Fig. 1, e.g.,, we detect the
constraints summarized in Table 3. That drift relates to
PRECEDENCE constraints indicating that before Release D
can occur, Leucocytes, CRP and ER Triage must occur.

4.6.2 Extended Directly-Follows Graph

The process analyst also benefits from a graphical repre-
sentation of the drifting constraints. To this end, we build
upon the Directly-Follows Graphs (DFGs) as shown in Fig. 2
on the left-hand side. Our technique extends the DFG with
additional arcs that convey the meaning of the DECLARE
constraints. We distinguish three general types of constraints:
immediate (e.g., CHAINPRECEDENCE(a,b), imposing that b
can occur only if a occurs immediately before), eventual
(e.g., SUCCESSION(a,b), dictating that, if a or b occur in the
same trace, b has to eventually follow a), and negated (e.g.,
NOTSUCCESSION(a,b), imposing that a cannot follow b). We
annotate them with green, blue, and red colors, respectively.
This way, the user is provided with an overview of the log
and which parts of the business process are affected by drifts.

4.7 Computational Complexity

As discussed in Section 3, Step 1 involves DFG mining
algorithms that are linear in the number of traces (O(|L|))
and quadratic in the number of activities (O(|%]?)). Step 2,
that is, mining constraint windows, is linear in the number
of traces (O(|L])) and quadratic in the number of activities
(O(]2?)) too. The subsumption of DECLARE constraints runs
in O(#cns - 10gy(#cns)) Where O(#ens) S O(|Z[?). Step 3,
clustering time series, is polynomial in the number of time
series and, therefore, of constraints (O(#2,,)). Step 4, sudden
drift detection, runs in O(#2,.) in the worst case. The tasks
of detecting gradual drifts and reoccurring drifts are constant
operations, as they are performed on the averaged time series.
Finally, Step 5, understanding drift behavior, has the same
asymptotic complexity as Step 1. We note that all the applied
computations present at most polynomial complexity.

5 EVALUATION

This section presents the evaluation of our visualization
system. This evaluation represents the deploy step that
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Table 4: Event logs used in the evaluation.

Origin Event log Related work
Synthetic ConditionalMove ProDrift 2.0 [15]
Synthetic ConditionalRemoval ProDrift 2.0 [15]
Synthetic ConditionalToSequence  ProDrift 2.0 [15]
Synthetic Loop  ProDrift 2.0 [15]
Real-world Italian help desk! Process Trees [31]
Real-world BPI20113 ProDrift 2.0 [15]
Real-world Sepsis” -

completes the core phase of the design study methodology
by [17]. Section 5.1 describes our implementation. Using this
implementation, our evaluation focuses on the following
aspects. Section 5.2 evaluates our drift point detection
technique for its capability to rediscover change points
induced into synthetic logs. Section 5.3 presents insights
that our system reveals on real-world cases. Section 5.4
presents experimental results on computational complexity.
Section 5.5 summarizes findings from a user study with
process mining experts who evaluated the visualizations of
our system on a real-world event log. With this part of the
evaluation, we focus on target users, their questions and
their measurements [65]. Finally, Sections 5.6 and 5.7 discuss
how our system addresses the requirements for process drift
detection and limitations of the approach, respectively.

5.1

For the implementation of our approach, we integrate
several state-of-the-art techniques and tools. To discover
DECLARE constraints, we use MINERful® because of its high
performance [21]. For change point detection, we integrate
the ruptures python library*. For time series clustering, we
resort to the scipy library®.

To attain the most effective outcome, we tune the clus-
tering parameters such as the weighted method for linking
clusters (distance between clusters defined as the average
between individual points) and the correlation metric (to find
individual distances between two time-series). To enhance
Drift Map visualizations, we sort the time series of each
cluster by the mean squared error distance metric. We
implemented both the Drift Map and Drift Chart using the
python library matplotlib.® For the Augmented Dickey-Fuller
test and autocorrelation we use the statmodels python library’.
To discover the Directly-Follows Graph, we extended the
pmdpy process mining python library® [52]. Our overall
system is implemented in Python 3. Its source code and the
parameters used for our experiments are publicly available.’

We found that varying the window size affects the results
only marginally. Experimenting with parameters, we ob-
served that producing sub-logs out of 60 windows provided

Implementation and user interaction

3. https:/ /github.com/cdc08x/MINERful
4. https:/ / github.com/deepcharles/ruptures

5. https:/ /docs.scipy.org/doc/scipy/reference / generated /scipy.cluster.
hierarchy.linkage html

6. https:/ /matplotlib.org/

7. http:/ /www.statsmodels.org/

8. http:/ /pm4py.org, https:/ /github.com/pm4py

9. https:/ / github.com/yesanton/Process-Drift- Visualization- With-Declare
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Figure 6: The user interface of the VDD system, running
on the Sepsis event log [1]. (a) Drift Map. (b) Drift Chart.
(c) Autocorrelation plot. (d) Erratic measure. (e) Spread of
constraints view. (f) Incremental drifts test. (g) Extended
Directly-Follows Graph. (i) Behavior cluster selection menu.

a good balance between detail and stability of the results.
Therefore, we recommend the following set-up for the in-
volved parameters: wingtep, = %, and wingjze = 2 - Wingtep
for smooth visual representation.

We use hierarchical clustering for time series clustering, as
it is reportedly one of the most suitable algorithms when
the number of clusters is unknown [61]. We found that the
Ward linkage method and the Euclidean distance function
produce the best results. To detect change points, we use
the Pruned Exact Linear Time (PELT) algorithm [62]. This
algorithm performs an exact search but requires the input
dataset to be of limited size. Our setup is appropriate as by
design the length of the multivariate time-series is limited
by the choice of parameters wing,. and wingp. Also, this
algorithm is suitable for cases in which the number of change
points is unknown a priori [22, p. 24], as in our case. We use
the Kernel cost function, detailed in [22], which is optimal for
our technique, and adopt the procedures described in [62] to
identify the optimal penalty value.

The VDD system web application is shown in Fig. 6.
We describe the tool and user interaction in detail in the
demo paper [66] and in the walk-through video.!” The user
starts with uploading an event log file. Then, she can tune
analysis parameters including wingep, Wingize, DECLARE
constraint type, cut threshold for hierarchical clustering, as
well as look-and-feel parameters such as the color scheme,
as shown in Fig. 6(h). Default values are suggested based
on the characteristics of the input log. Multiple views are
displayed and updated in the maun panel Fig. 6(a-g). The
user can select the behavior cluster to focus on Fig. 6(i), thus
triggering an update in the other views Fig. 6(b-g).

The application of our system with a multi-national
company highlights the importance of such exploratory
analysis strategies. Understanding changes over time is of
key importance to process analysts to identify factors of
change and effects of management interventions into the
process. The user interaction of our system supports the
visual identification of drifts and helps to drill down into the
behavior that is associated with those drifts, thereby helping

10. https:/ /youtu.be/mHOgVBZ4Imc
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the analysts formulate and validate hypotheses about factors
of change in the process.

5.2 Evaluation on synthetic data

For our evaluation, we make use of synthetic and real-
world event logs.!''213!4 In this way, we can compare the
effectiveness of our approach with earlier proposals. Table 4
summarizes the event logs used in the evaluation and
indicates which prior papers used these logs.

To demonstrate the accuracy with which our technique
detects drifts, we first test it on synthetic data in which drifts
were manually inserted, thereby showing that we accurately
detect drifts at the points in which they occur. We compare
our results with the state-of-the-art algorithm ProDrift [15]
on real-world event logs.

Ostovar et al. [15] published a set of synthetic logs that
they altered by artificially injecting drifting behavior: Condi-
tionalMove, ConditionalRemoval, ConditionalToSequence,
and Loop."® Figure 7 illustrates the results of the application
of the VDD technique on these logs. By measuring precision
as the fraction of correctly identified drifts over all the ones
retrieved by VDD and recall as the fraction of correctly
identified drifts over the actual ones, we computed the F-
score (harmonic mean of precision and recall) of our results
for each log. Using the default settings and no constraint
set clustering, we achieve the F-score of 1.0 for logs Condi-
tionalMove, ConditionalRemoval, ConditionalToSequence,
and 0.89 for the Loop log. When applying the cluster-based
change detection for the Loop log, we achieve an F-score
of 1.0. he Drift Chart in Fig. 7(f) illustrates the trend of
confidence for the most erratic cluster for the Loop log.
The Drift Map for the Loop log is depicted in Fig. 7(e). In
contrast to [15] we can see which behavior in which cluster
contributes to the drift.

5.3 Evaluation on real-world data

Next, we evaluate our system with three real-world event
logs. In the next subsections we describe all processing steps
for each of the logs.

5.3.1 Sepsis log

The sepsis log describes the cases of patients affected by
sepsis. This condition occurs to some patients as a response
to infections. The process that generated this log captures
the activities executed from the registration of the patients
until they are discharged. Prior process mining techniques
offer limited insights into this log [1]. We use the processing
steps and the multiple outputs of our system to get an
understanding of changes in this log over time.

Step 1: Mining Directly-Follows Graph as an overview.
The directly-Follows Graph from this log shows 12 activities.
The most frequent activity is Leucocytes with 3386 instances,
followed by the activity CRT with 3262 occurrences. In con-
trast, the activity Admission IC only occurred 117 times. The

11. https://doi.org/10.4121/uuid:0c60edf1-6{83-4€75-9367-4c63b3e9d5bb
12. https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07

13. https://doi.org/10.4121/uuid:d9769{3d-0ab0-4{b8-803b-0d1120ffcf54 (pre-
processed as in [15])

14. https:/ /data.4tu.nl/repository /uuid:915d2bfb-7e84-49ad-a286-dc35{063a460

15. http:/ /apromore.org/platform/tools
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Figure 7: Evaluation results on synthetic logs.
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Figure 8: Autocorrelation plots for the sepsis log.

main path through the DFG is ER registration — ER Triage —
ER Sepsis Triage — CRT — Leucocytes — Admission NC. Next
to this frequent path, various variants exist that correspond to
the less frequent behavior — including, e.g., the Addmission IC
and IV Liquid activities.

Step 2: Mining DECLARE constraints windows.

For determining the wing,. and #win we consider the
number of traces in the log. The log contains 1050 cases
spanning over the period of time of a year and four months.
We chose a wing;,e of 50 and a winggep of 25.

Step 3-4: Finding Drifts and Visual Drift Overview. Fig-
ure 9(a) depicts the overall drift behavior. The Drift Map
hardly shows any strong patterns of change over time.
Apparently, most of the major clusters of behavior do
not evidence drifts. Drilling down into clusters with less
constraints offers us insights into quite erratic behavior
though (see Fig. 9(b) and Fig. 9(c)).

Step 5: Detecting Drift Types. Using the Augmented Dickey-
Fuller test, we test the hypothesis that there is a unit root
present in the data. If so, the time-series is considered to
be non-stationary. The analysis of cluster 8 and cluster 12
shows a p value of 3 x 107% and 7.7 x 1075, respectively,
suggesting that the data does not have a unit root, i.e,, it is
stationary. This means that the behavior does not have an
upward or downward trend of change.

The autocorrelation plots shown in Fig. 8 display negative
correlation in steps 2-3 and positive autocorrelation in steps
6-7 — see Fig. 8(a) and Fig. 8(b). That means that there is
significant seasonality in the data.
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Figure 9: Sepsis VDD visualizations.

Table 5: Sepsis log erratic clusters.

Drift number Erratic measure

without drift 40.000
11 245.305

12 324.841

10 415.008

7 417.135

9 495.795

8 534.815

Step 6: Understanding drift behavior. In order to under-
stand the behavior behind some of the drifts we discovered
in previous steps, we explore their list of constraints and the
derived extended DFG. Based on the inspection of the Drift
Map in Fig. 9(a) and the erratic measures in Table 5, we focus
on the drifts in Fig. 9(b) and Fig. 9(c).

Table 6 shows the DECLARE constraints of these clusters.
We observe that the drifts are related to specific activities,
namely Release C for cluster 8 and Release D for cluster 12. We
conclude that there are reoccurring drift patterns indicating,
thus there are seasonal factors affecting Release C and a
Release D. We highlight the process behavior that is subject
to drifts via the extended Directly-Follows Graphs. Figure 10
shows the extended DFG highlighting the activities involved
in the drift behavior of cluster 8. For this case, we observe
that activity Release D was executed after several activities in
certain parts of the timeline, as shown in Fig. 9(b).

Table 6: Sepsis log constraints.

Cluster Constraint  Activity 1 ~ Activity 2
PRECEDENCE IV Antibiotics Release C
ALTERNATEPRECEDENCE |V Antibiotics Release C

8 PRECEDENCE IV Liquid  Release C
ALTERNATEPRECEDENCE IV Liquid Release C
ALTERNATEPRECEDENCE Leucocytes Release C
CHAINPRECEDENCE CRP  Release D
PRECEDENCE IV Antibiotics Release D
ALTERNATEPRECEDENCE |V Antibiotics Release D

12 PRECEDENCE IV Liquid Release D
ALTERNATEPRECEDENCE IV Liquid  Release D
PRECEDENCE LacticAcid Release D
ALTERNATEPRECEDENCE LacticAcid Release D

12

Figure 10: Extended Directy-Follows Graph for cluster 8,
derived from the sepsis log.

5.3.2 ltalian help desk log

Next, we focus on the event log of the help-desk of an Italian
software company. It covers all steps from the submission of a
support ticket to its closing. Figure 11 provides an overview.
Step 1: Mining Directly-Follows Graph as an overview.
The Directly-Follows Graph of this log displays 9 activities.
While activity Take in charge ticket occurred 5059 times, activity
Schedule intervention only occurred 5 times. The main path
through the DFG is Assign seriousness — Take in charge ticket
— Resolve ticket — Closed. Other variants are evidenced
though, corresponding to the the observation of anoma-
lies (Create SW anomaly activity), waiting (Wait activity), or
requests for an upgrade (Require upgrade activity).
Step 2: Mining DECLARE windows. This log contains 4579
cases that are evenly distributed over the period of four years.
We set the wingi,e to 100 and the wingep to 50.
Step 3-4: Finding Drifts and Visual Drift Overview. Based
on the mined DECLARE constraints, the Drift Map is gen-
erated. Figure 13 shows the overview of the drifts in the
log. For the overall set of clusters, there are three major drift
points detected. Figure 13(b) shows a more fine-granular
series of drift points, which can be observed within separate
clusters. There are also many drifts that signify unregular
behaviour and are probably outliers (such as drifts 9, 10 and
11 in Fig. 13(b)). In step 5 we inspect them in detail.
Step 5: Detecting Drift Types. Our system correctly detects
sudden drifts in the Italian help desk log, identifying the
same two drifts that were found by ProDrift [31], approxi-
mately in the first half and towards the end of the time span.
As illustrated by the VDD visualization in Fig. 13(a), we
additionally detect another sudden drift in the first quarter.
By analyzing the within-cluster changes (Fig. 13(b)), we
notice that the most erratic cluster contains an outlier, as
is shown by the spikes in Fig. 13(c).

We check for reoccurring drifts based on autocorrelation.
The visualizations in Fig. 12 show the autocorrelation plots
of different clusters together with their Drift Charts. Cluster
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Figure 11: The VDD system visualization of the Italian help desk event log.
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Figure 12: Italian help desk autocorrelation results
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Figure 13: Italian help desk log VDD visualizations.

9 (Fig. 12(a)) shows seasonality, while clusters 12 and 15
(Figs. 12(b) and 12(c)) do not.

Based on the Augmented Dickey-Fuller test, we discover
that some of the clusters exhibit incremental drift. For
example, cluster 15 has a p-value of 0.98045 indicating a
unit-root, which points to non-stationarity. Indeed, we find
an incremental drift with an associated decreasing trend, as
shown in Fig. 12(c). The result alongside the erratic measures
are shown in Table 7. They highlight that cluster 9 has the
most erratic drift behavior.

Step 6: Understanding drift behavior. We further in-

Table 7: Italian help desk log erratic clusters.

Drift number Erratic measure A-Dickey-Fuller p-value

without drift 89.000

9 681.466 0.001
11 578.792 0.001
14 394.138 0.000
13 386.377 0.130

7 287.538 0.316
10 256.339 0.960
16 174.017 0.080
12 166.638 0.900

4 139.403 0.316

0 0

(a) Erratic=578.792 (b) Erratic=139.403
for cluster 11 for cluster 4

Figure 14: Italian help desk log detailed clusters.

vestigate the most erratic cluster. Figure 12(a) shows
that its behavior of a reoccurring drift type. During the
times of peaks, the activity Create SW anomaly always had
Take in charge ticket executed immediately beforehand. Also,
we observe that the Assign seriousness activity was executed
before Create SW anomaly, and no other Create SW anomaly
occurred in between. We further analyze other clusters
with erratic behavior as shown in Table 7. Figure 14 shows
the drift for cluster 11 and cluster 4. The corresponding
constraints are listed in Table 8. Figure 14(a) has four spikes,
where Schedule intervention activities occurred. Immediately
before Schedule intervention, Take in charge ticket occurred. Also,
Assign seriousness occurred before Schedule intervention. We no-
tice, however, that this cluster shows outlier behavior, due to
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Table 8: Italian ticket log constraints; including minimum,
maximum, and average confidence.

Cluster Constraint Activity 1 Activity 2 Min Max Mean
CHAINPRECEDENCE  Take in charge ticket ~ Create SW anomaly 0.0 100.0 42.8
ALTERNATEPRECEDENCE  Assign seriousness Create SW anomaly 0.0 100.0 49.0
1 CHAINPRECEDENCE  Take in charge ticket ~ Schedule intervention 0.0 100.0 9.9
ALTERNATEPRECEDENCE  Assign seriousness ~ Schedule intervention 0.0 100.0 9.9
CHAINRESPONSE  Take in charge ticket Wait 9.4 69.6 23.2
NOTSUCCESSION Resolve ticket Wait  10.0 7.2 26.0
NOTSUCCESSION Wait Assign seriousness  10.0 78.0 26.6
NOTSUCCESSION Wait  Takein charge ticket 9.8 73.3 22.1

ALTERNATERESPONSE  Assign seriousness Wait 9.0 72.3 23.8

ALTERNATERESPONSE Wait Closed 8.3 61.4 22.5
ALTERNATERESPONSE Wait Resolve ticket 8.3 61.4 22.8
ATMOSTONE Wait 9.8 68.6 25.1

cedence

1 Precedence

Figure 15: Extended Directly-Follows Graph of cluster 12 in
the Italian help desk log.

its rare changes.

Figure 14(b) shows a gradual drift until June 2012, and
an incremental drift afterward. We notice that all constraints
in the cluster have Wait either as an activation (e.g., with
ALTERNATERESPONSE(Wait, closed)) or as a target (e.g., with
CHAINRESPONSE(Take in charge ticket, Wait)).

Finally, we look at cluster 12 with its one-spike drift
in Fig. 12(b). The corresponding eDFG in Fig. 15 shows
that this behaviour relates to a Take in charge ticket and
Assign seriousness.

5.3.3 BPI2011 event log

BPI2011 is the log from the the Gynaecology department of
a hospital in the Netherlands.

Step 1: Mining Directly-Follows Graph as an overview.
The Directly-Follows Graph includes 34 activities. It is shown
in Fig. 19. The paths of the cases are largely different, such
that no clear main path can be identified.

Step 2: Mining DECLARE windows. This log contains 1142
cases spanning over a period of three years and four month.
We chose the wing,, of 40 and the wing.p, of 20 in our
analysis.

Step 3-4: Finding Drifts and Visual Drift Overview.
Figure 16(a) shows the Drift Map of the BPIC2011 event log.
As in [15], two drifts are detected towards the second half of
the time span of the log. However, in addition, our technique
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(a) Overall change (b) Drifts by cluster (c) Most erratic clus-

points ter (cluster 12)
Figure 16: BP12011 VDD visualizations.

Table 9: BPI2011 erratic clusters.

Drift number Erratic measure A-Dickey-Fuller p-value

without drift 55
12 221.7915528 0.060 885
6 220.990 778 5 0.479 091
8 215.308 957 5 0.546 296
7 214.006 7707 0.887 760
1 205.8439399 0.760 080

identifies drifting behavior at a finer granularity. Figure 16(b)
shows the drifts pertaining to clusters of constraints. The
trend of the confidence measure for the most erratic cluster
is depicted in Figure 16(c).

While the Drift Map shows that most of the drifts display

increasing trends for the plots at the end of the event
log timeline, Fig. 17(a) highlights the opposite direction.
The most erratic cluster is characterized by a confidence
values that decrease from the beginning of the timeline and
decreases afterwards.
Step 5: Detecting Drift Types. To better understand a
particular drift, we further examine the constraints that
participate in the drift. We explore statistical properties of the
discovered drifts. We use the erratic measure to identify the
strongest drifts and run sudden drift detection in order to
identify the drift types. Sudden drifts are visible in Fig. 16(a)
that correspond to those found in [15]. Moreover, we are able
to discover the sudden drifts for each individual cluster of
behavior as shown by vertical lines in Figs. 16(b) and 16(c).

Running the autocorrelation analysis reveals that most of
the drifts do not show seasonality. An exception is cluster
15. Its autocorrelation graph (Fig. 17(c)) and Drift Chart
(Fig. 17(b)) exhibit seasonality. The Augmented Dickey-Fuller
test Table 9 evidences that all of the most erratic clusters are
non-stationary. This means that there is a constant change in

. N ’1. .
m ‘ I

(b) Drift Chart
of cluster 15

(a) Drift Chart
of cluster 13

(c) Autocorrelation
plot of cluster 15

Figure 17: BPI2011 visualizations.
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Figure 18: Cluster 16 of BPIC2011

Figure 19: Cluster 16 of BPIC2011

the process behavior, thus we can conclude that those drifts
are incremental.

Step 6: Understanding drift behavior. Figure 18 illustrates
the drift chart of cluster 16, which we consider for the
annotation of the extended DFG in Fig. 19. Apparently,
the majority of the drifts in this cluster refer to activity
vervolgconsult poliklinisch, which is subject to PRECEDENCE
constraints with several other activities.

5.4 Computational Performance

We have tested the computational performance of the system.
We used a MacOS system, equipped with 2.4 GHz Dual-
Core Intel Core i5 and 8 GB of RAM. Table 10 shows the
wall-clock time needed for our system to process each data
set, and the basic data set characteristic. To determine the
computational performance we used parameters applied in
our tests from Sections 5.2 and 5.3.

We have measured the computation time of the different
steps of the algorithm. First, we measured the time needed
to extract time series from the data, cluster, perform change
point detection, visualize Drift Map and Drift Charts (Steps
2-4 of our algorithm from Section 4). Second, we measured
the time to build extended DFGs for each cluster (Steps 1 and
6). Third, we measured the time employed by the system to
generate autocorrelation plots, finding erratic and spread of
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Table 10: Characteristics of the event logs and wall-clock time
performance of the system expressed in seconds. CM stands
for Conditional Move, CR for Conditional Removal, CS for
Conditional to Sequence, IHD for Italian Help Desk logs.

Eventlog CM CR CS Loop IHD BPI2011 Sepsis
Hseq 9998 9999 2999 9999 4579 1142 1050
av.seq.l. 2227 2310 23.04 2313 4.66 98.31 14.49
H#act 27 28 28 27 14 33 16
Steps 2-4 3498 3416 27.83 3477 3421 48.77  17.39
Steps1,6 2098 1888 894 1816 548 194.19 4.22
Step 5 1124 1084 11.86 1093 10.76 15.04 8.29
Total 67.24 63.87 48.63 63.82 50.45 258.02  29.90

constraints measures, and performing the stationarity tests
(Step 5).

The tests show that our system if mostly affected by the
number of activities, #act, and the average length of the
sequences in the DFG. This parameter is a key factor for the
complexity of the extended DFG, as the rendering of the
graph appears to be the most costly operation due to the
number of DECLARE constraints that need to be visualized for
some of the clusters. Indeed, the BPI2011 event log required
the highest amount of time for all steps. The Italian help
desk log needed the lowest time to complete all calculations,
as #act and average sequence length is the lowest of other
datasets.

5.5 User Evaluation

The previous part of the evaluation highlights the accuracy of
our drift detection and visualization. Our system is designed
to meet the requirements of business process analysts. The
objective of our user evaluation is to collect evidence in
order to judge to which extent the requirements have been
effectively addressed. To this end, we conducted a user
study with 12 process mining experts who are familiar
with different tools and approaches for visualizing business
process event logs.

The participants were introduced to the data set of
the helpdesk case described in Section 5.3.2 together with
its Directly-Follows Graph. Then, the participants learned
about the four major visualization techniques of our system
(extended directly-follows graph, drift map, drift chart, and
drift measures). We collected quantitative and qualitative
data via a survey with a Likert scale and open questions.

Our quantitative evaluation builds on the established
technology acceptance model [67], [68]. This model posits
that the two major antecedents of technology adoption
are perceived usefulness and ease of use. In our context,
this essentially means that if process analysts perceive our
visualization system to be easy to use and to provide useful
insights, they would likely want to use it in their daily work.
The user perceptions of ease of use and usefulness were
assessed using the established psychometric measurement
instrument with 5 and 6 question items per construct,
respectively [67].

The results of the technology acceptance assessment are
presented in Fig. 20. We observe that both ease of use and
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Figure 20: Boxplots of perceived ease of use and perceived
usefulness according to the user study

usefulness are perceived to be close to each other, with
usefulness being consistently stronger. Both measurement
scales have a high average between 5 and 6, indicating that

the users agree that the system is easy to use and useful.

The exception is the ease of use of the drift map, which was
partially judged to be difficult.

Beyond the quantitative assessment, we also collected
qualitative feedback on the different visualizations of our
system. Regarding the drift map, participant P7 states that it
“visualizes in one picture a great amount of detailed information in
a useful way. It allows perceiving the changes of all the behavior
without query for each of them.” Participant P2 suggests that
it “would be nice to add the meaning of clusters.” To address
this point, we added the feature to filter the drift map
for constraints that relate to a specific activity. Regarding
the drift chart, Participant P6 notes that it “is very easy to
understand. It clearly shows the compliance of the cases with
certain constraints and how it evolves over time.” Participant
P5 suggests some indication “if less/more traces comply with
rules.” To address this point, we added absolute numbers
showing how many cases relate to this chart. Regarding
the extended DFG, Participant P8 emphasizes that “I like
that they provide details of specific constraints. I like to visually
see the process. I like the enhanced process model.” Participant
P5 highlights that “I see a risk of information overload.” We
address this point by offering a functionality to filter the
eDFG. Regarding the overall system, different participants
expressed their perceptions on usefulness by emphasizing
that the system “provides very powerful means to explore the
process change” (P6). Participant P8 states that “I like to see the
three visualizations together.” Participant P5 concludes that the
information provided by the system “certainly improves the
accuracy of decisions.”

5.6 Discussion

Our method addresses all the five requirements for process
drift detection presented in Section 2.2 as follows:

R1 We evaluated our method with the synthetic logs
showing its ability to identify drifts precisely;

R2 We developed a visualization approach based on Drift
Maps and Drift Charts for the classification of process
drifts and have shown its effectiveness for real-world
logs. Our enhanced approach based on change point
detection has yielded an effective way o automatically
discover the exact points at which sudden and reoccurring
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concept drifts occur. The indicative approximation of
long-running progress of incremental and gradual drifts
was also found. Outliers were detected via time series
clustering;

R3 Using clustering, Drift Map, and Drift Charts, the
method enables the drilling down into (rolling up out)
sections with a specific behavior (general vs. cluster-
specific groups of constraints);

R4 We introduced, and incorporated into our technique, a
drift measure called Erratic that quantifies the extent of
the drift change;

R5 To further qualitatively analyze the detected drifts, VDD
shows how the process specification looks before and
after the drift (as a list of DECLARE constraints, refer
to Table 8).

5.7 Limitations

In this section, we outline the future work directions defined
by the limitations of our system.

We noticed that irregularly sampled data could affect the
analysis. Our approach splits a log into windows of a fixed
number of traces. The irregular data could produce graphs
that have unevenly spaced timeticks. Taking into account the
time ranges instead of the number of traces will affect our
analysis. Different strategies for splitting the log should be
investigated in future work.

When interacting with the VDD system, an analyst man-
ually identifies seasonal drifts based on the autocorrelation
graphs and explores incremental drifts based on Drift Charts.
Future work will aim at automating both these tasks.

As demonstrated in Section 5.4, the performance of
the system allows for the handling of industrial datasets.
However, this performance is achieved for the offline setting,
when the necessary information is precomputed, and does
not extend to the online setting, as new input data will
trigger an overall recalculation. Extending the system to
online settings is another avenue for future work.

For datasets with a large number of possible activities
and a significant number of drifts, the performance of the
system could be further improved by prioritizing DECLARE
constraints that get rendered as DFGs.

Finally, the choices of algorithms for clustering and
change-point detection could be informed by the input data.
In the case of a large dataset, faster clustering algorithms
could be selected. The analysis of such choices on the
system’s performance is future work.

6 CONCLUSIONS

In this paper, we presented a visual system for the detection
and analysis of process drifts from event logs of executed
business processes. Our contributions are techniques for
fine-granular process drift detection and visualization. The
different visualizations of our system integrate extended
Directly-Follows Graphs, DECLARE constraints, the Drift
Maps and Drift Charts plus several metrics and statistics for
determining types of drift.

We evaluated our system both on synthetic and real-
world data. On synthetic logs, we achieved an average
F-score of 0.96 and outperformed all the state-of-the-art
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methods. On real-world logs, the technique describes all
types of process drifts in a comprehensive manner. Also, the
evaluation reported that our technique can identify outliers
of process behavior. Furthermore, we conducted a user study,
which highlights that our visualizations are easy to interact
with and useful, as perceived by process mining experts.
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