
Postprint, September 2020

Identifying Candidate Routines for Robotic Process
Automation from Unsegmented UI Logs

Volodymyr Leno∗†, Adriano Augusto∗, Marlon Dumas†, Marcello La Rosa∗,
Fabrizio Maria Maggi‡†, Artem Polyvyanyy∗

∗University of Melbourne, Australia
{a.augusto, marcello.larosa, artem.polyvyanyy}@unimelb.edu.au

†University of Tartu, Estonia
{leno, marlon.dumas}@ut.ee

‡Free University of Bozen-Bolzano, Italy
maggi@inf.unibz.it

Abstract—Robotic Process Automation (RPA) is a technology
to develop software bots that automate repetitive sequences
of interactions between users and software applications (a.k.a.
routines). To take full advantage of this technology, organizations
need to identify and to scope their routines. This is a challenging
endeavor in large organizations, as routines are usually not
concentrated in a handful of processes, but rather scattered
across the process landscape. Accordingly, the identification of
routines from User Interaction (UI) logs has received significant
attention. Existing approaches to this problem assume that the
UI log is segmented, meaning that it consists of traces of a task
that is presupposed to contain one or more routines. However, a
UI log usually takes the form of a single unsegmented sequence
of events. This paper presents an approach to discover candidate
routines from unsegmented UI logs in the presence of noise, i.e.
events within or between routine instances that do not belong
to any routine. The approach is implemented as an open-source
tool and evaluated using synthetic and real-life UI logs.

Index Terms—Robotic process automation, robotic process
mining, user interaction log.

I. INTRODUCTION

Robotic Process Automation (RPA) allows organizations to
improve their processes by automating repetitive sequences of
interactions between a user and one or more software appli-
cations (a.k.a. routines). With this technology, it is possible
to automate data entry, data transfer, and verification tasks,
particularly when such tasks involve multiple applications. To
exploit this technology, organizations need to identify routines
that are prone to automation [1]. This can be achieved via
interviews or manual observation of workers. In large orga-
nizations, however, this approach is not always cost-efficient
as routines tend to be scattered across the process landscape.
In this setting, manual routines identification efforts can be
enhanced via automated methods, for example methods that
extract frequent patterns from these User Interaction (UI) logs
of working sessions of one or more workers [2].

Existing methods in this space [3]–[6] assume that the event
log consists of a set of traces of a task that is presupposed to
contain one or more routines. When the log is segmented, the
identification of candidate routines boils down to discovering
frequent sequential patterns from a collection of sequences, a
problem for which a range of algorithms exist.

In practice, though, UI logs are not segmented. Instead, a
recording of a working session consists of a single sequence of

actions encompassing many instances of one or more routines,
interspersed with other events that may not be part of any
routine. Traditional approaches to sequential pattern mining,
particularly those that are resilient to noise (irrelevant events)
are not applicable to such unsegmented logs.

This paper addresses this gap by proposing a method to au-
tomatically split an unsegmented UI log into a set of segments,
each representing a sequence of steps that appears repeatedly
in the unsegmented UI log. Once the log is segmented, sequen-
tial pattern mining techniques are used to discover candidate
routines. The method has been evaluated on synthetic and
real-life UI logs in terms of its ability to rediscover routines
contained in a log and in terms of scalability.

The paper is structured as follows. Section II provides
the necessary background and an overview of related work.
Section III describes the approach, while Section IV reports
the results of the evaluation. Finally, Section V concludes the
paper and spells out directions for future work.

II. BACKGROUND AND RELATED WORK

The problem addressed by this paper can be framed in the
broader context of Robotic Process Mining (RPM) [2]. RPM is
a family of methods to discover repetitive routines performed
by employees during their daily work, and to turn such routines
into software scripts that emulate their execution. The first step
in an RPM pipeline is to record the interactions between one or
more workers and one or more software applications [7]. The
recorded data is represented as a UI log – a sequence of user
interactions (herein called UIs), such as selecting a cell in a
spreadheet or editing a text field in a form. The UI log may be
filtered to remove irrelevant UIs (e.g. misclicks). Next, it may
be decomposed into segments. The discovered segments are
scanned to identify routines that occur across these segments.
Finally, the resulting routines are analysed to identify those
that are automatable and to encode them as RPA scripts.

The problem of routines identification from UI logs in
the context of RPM has attracted significant attention [7].
However, existing approaches for routines identification from
UI logs either take as input a segmented UI log [3], [5], [6],
[8], or they assume that the log can be trivially segmented by
breaking it down at each point where one among a set of “start

events” appears [4]. These start events, which act as delimiters
between segments, need to be designated by the user.

Another technique for routines identification [1] attempts
to identify candidate routines from textual documents – an
approach that is suitable for earlier stages of routines identifi-
cation and could be used to determine which processes or tasks
could be recorded and analyzed in order to identify routines.

Below, we review the literature related to UI log segmenta-
tion and identification of routines from (segmented) logs.

A. UI Log Segmentation

Given a UI log, i.e. a sequence of UIs, segmentation
consists in identifying non-overlapping subsequences of UIs,
namely segments, such that each subsequence represents the
execution of a task performed by an employee from start
to end. In other words, segmentation searches for repetitive
patterns in the UI log. In an ideal scenario, we would observe
only one unique pattern (the task execution) repeated a finite
number of times. However, in reality, this scenario is unlikely
to materialise. Instead, it is reasonable to assume that an
employee performing X-times the same task would do some
mistakes or introduce variance in how the task is performed.

The problem of segmentation is similar to periodic pattern
mining on time series. While several studies addressed the
latter problem over the past decades [9], [10], most of them
require information regarding the length of the pattern to
discover, or assume a natural period to be available (e.g. hour,
day, week). This makes the adaptation of such techniques
to solve the problem of segmentation challenging, unless
periodicity and pattern length are known a-priori.

Under the same class of problems, we find web session
reconstruction [11], whose goal is to identify the beginning
and the end of web navigation sessions in server log data, e.g.
streams of clicks and web pages navigation [11]. Methods for
session reconstruction are usually based on heuristics that rely
either on IP addresses or on time intervals between events. The
former approach is not applicable in our context (routines in
UI logs cannot be segmented based on IP addresses), while
the latter approach assumes that users make breaks in-between
two consecutive segments – in our case, two routine instances.

Lastly, segmentation also relates to the problem of correla-
tion of event logs for process mining. In such logs, each event
should normally include an identifier of a process instance
(case identifier), a timestamp, an activity label, and possibly
other attributes. When the events in an event log do not contain
explicit case identifiers, they are said to be uncorrelated.
Various methods have been proposed to extract correlated
event logs from uncorrelated ones. However, existing methods
in this field either assume that a process model is given as
input [12] or that the underlying process is acyclic [13]. Both
of these assumptions are unrealistic in our setting: a process
model is not available since we are exactly trying to extract
that information from the log (by identifying the routines), and
a routine may contain repetitions.

B. Routines Identification

Once the UI log is segmented, the segments are scanned
to identify routines. Dev and Liu [3] have noted that the

problem of routines identification from (segmented) UI logs
can be mapped to that of frequent pattern mining, a well-
known problem in the field of data mining [14]. Indeed, the
goal of routines identification is to identify repetitive (frequent)
sequences of interactions, which can be represented as sym-
bols. In the literature, several algorithms are available to mine
frequent patterns from sequences of symbols. Depending on
their output, we can distinguish two types of frequent pattern
mining algorithms: those that discover only exact patterns [15],
[16] (hence vulnerable to noise) and those that allow frequent
patterns to have gaps within the sequence of symbols [17],
[18] (hence noise-resilient). Depending on their input, we can
distinguish between algorithms that operate on a collection of
sequences of symbols and those that discover frequent patterns
from a single long sequence of symbols [16]. The former
algorithms can be applied to segmented UI logs while the
latter can be applied directly to unsegmented ones. However,
techniques that identify patterns from a single sequence of
symbols only scale up when identifying exact patterns.

III. APPROACH

In this section, we describe our approach for identifying
candidate routines in UI logs. As input, the approach takes a
preprocessed and normalized UI log and outputs a set of can-
didate routines. The approach follows the RPM pipeline [2],
and consists of two macro steps. First, the normalized UI
log is decomposed into segments. Then, candidate routines
are identified by mining frequent sequential patterns from
the segments. In this paper, we refer to these two macro
steps as segmentation and candidate routines identification,
respectively. The approach is summarized in Fig. 1. Next,
we describe the steps in detail, including the required UI log
preprocessing and normalization.

A. UI Log Preprocessing and Normalization

Before we proceed, we give some formal definitions neces-
sary to support the subsequent discussions.

Definition 1 (User Interaction (UI)): A user interaction
(UI) is a tuple u = (t,τ,P,Z,φ), where: t is a UI timestamp;
τ is a UI type (e.g. click button, copy cell); Pτ is a set of UI
parameters (e.g. button name, worksheet name, url, etc.); Z is
a set of UI parameters values; and φ : Pτ → Z is a function
that maps UI parameters onto values.

Definition 2 (UI Log): A UI Log Σ is a sequence of user
interactions Σ = 〈u1,u2, . . . ,un〉, ordered by timestamp, i.e.
ui|t < u j|t for any i, j | 1≤ i < j ≤ n. In the remainder of this
paper, we also call a UI log simply log.

Ideally, the UIs recorded in a UI log should capture only
the execution of the task under recording. However, a log
often contains also UIs that do not bring any value to the
recorded task, and that should not have been executed in the
first place. Some common examples of such UI noise include:
an employee replying to incoming emails and/or browsing
the web while executing a different task; or an employee
committing mistakes, e.g. filling a text field with an incorrect
value, or copying an incorrect text or cell in a spreadsheet.
To reduce the impact of noise on routines identification,
we preprocess the log. The preprocessing we apply consists

2

UI Log
Preprocessing and

Normalization
CFG

Construction
Back edges
detection

Segments
identification

Candidate
identification

Candidate
selection

Candidate
Routines

Segmentation Candidate routines identification

Fig. 1: Outline of the proposed approach

in identifying and removing redundant UIs that are clearly
overwritten by successive UIs, such as the case of a double
CTRL+C performed in sequence on different text fields. To
identify such patterns of UIs, we rely on regular expressions
by applying the methods described in [19].

After the preprocessing, the vast majority of UIs in the log
are unique, because they differ by their payload. Even UIs
capturing the same action within the same task execution (or
different task executions) appear to be different. To discover
each task execution (from start to end) recorded in the UI
log, we need to detect all the UIs that, even having different
payloads, correspond to the same action within the task
execution.

To do so, we need to introduce the concepts of UI data
parameter, UI context parameter, and normalized UI. Given
a UI, its parameters can be divided into two types: data
parameter and context parameter. The data parameters store
the data values that are used during the execution of a task,
e.g. the value of text fields or copied content. The data
parameters usually have different values per task execution.
By contrast, the context parameters capture where the UI was
performed, e.g. the application and the location within the
application. The context parameters are likely to have always
the same values even in different task executions. For example,
a UI of type copy includes the following parameters: target-
application (e.g. the browser), user, element id (e.g. the id
of a text field in the browser), copied content. Here, target-
application and element id are context parameters, while
copied content is a data parameter. Naturally, different type
of UIs are characterized by different context parameters, e.g.
a UI in a spreadsheet has the following context parameters:
spreadsheet name and cell location.1

Definition 3 (Normalized UI): Given a UI u=(t,τ,Pτ ,Z,φ),
we define its normalization as ū = (t,τ, P̄τ , Z̄,φ); where Z̄ ⊆ Z
contains only the values of the parameters in P̄, where P̄
is a set of context parameters. Given two normalized UIs,
u1 = (t1,τ,Pτ , Z̄1,φ1),u2 = (t2,τ,Pτ , Z̄2,φ2), the equality rela-
tion u1 = u2 holds iff ∀p ∈ Pτ ⇒ φ1(p) = φ2(p).

Given a UI log Σ = 〈u1,u2, . . . ,un〉, we normalize it by
normalizing all the recorded UIs. The resulting normalized UI
log is Σ̄ = 〈ū1, ū2, . . . , ūn〉. Table I and II show, respectively,
a small fragment of a UI log and its normalized version.
Intuitively, in a normalized UI log, the chances that two
executions of the same routine have the same sequence (or
set) of normalized UIs are high, because normalized UIs only
have context parameters. In the next steps, we leverage such a
characteristic of the normalized UI log to identify its segments
(i.e. start and end of each executed task), and the routine(s)
within the segments.

1The context parameters are selected by the domain expert.

UI UI UI Parameters and Values

Timestamp Type P1: Application P2: Element Label P3: Element Value

1 2019-03-03T19:02:18 Click button Web New Record –

2 2019-03-03T19:02:23 Edit field Web Full Name Albert Rauf

3 2019-03-03T19:02:27 Edit field Web Date 11-04-1986

4 2019-03-03T19:02:39 Edit field Web Phone + 61 043 512 4834

5 2019-03-03T19:02:47 Click button Web Submit –

6 2019-03-03T19:02:58 Click button Web New Record –

7 2019-03-03T19:03:13 Edit field Web Date 20-06-1987

8 2019-03-03T19:03:24 Edit field Web Phone +61 519 790 1066

9 2019-03-03T19:03:43 Edit field Web Full Name Audrey Backer

10 2019-03-03T19:04:10 Click button Web Submit –

TABLE I: Fragment of a UI log

UI UI UI Parameters and Values

Timestamp Type P1: Application P2: Element Label

1 2019-03-03T19:02:18 Click button Web New Record

2 2019-03-03T19:02:23 Edit field Web Full Name

3 2019-03-03T19:02:27 Edit field Web Date

4 2019-03-03T19:02:39 Edit field Web Phone

5 2019-03-03T19:02:47 Click button Web Submit

6 2019-03-03T19:02:58 Click button Web New Record

7 2019-03-03T19:03:13 Edit field Web Date

8 2019-03-03T19:03:24 Edit field Web Phone

9 2019-03-03T19:03:43 Edit field Web Full Name

10 2019-03-03T19:04:10 Click button Web Submit

TABLE II: Normalized UI log

B. Segmentation

Before describing in detail the segmentation step, we for-
mally define the necessary cornerstone concepts.

Definition 4 (Directly-follows relation): Let
Σ̄ = 〈ū1, ū2, . . . , ūn〉 be a normalized UI log. Given two
normalized UIs, ūx, ūy ∈ Σ̄, we say that ūy directly-follows ūx,
i.e. ūx ūy, iff ūx|t < ūy|t ∧@ūz ∈ Σ | ūx|t ≥ ūz|t ≥ ūy|t .

Definition 5 (Control-Flow Graph (CFG)): Given a normal-
ized UI log, Σ̄ = 〈ū1, ū2, . . . , ūn〉, let Ā be the set of normalized
UIs in Σ̄. A Control-Flow Graph (CFG) is a tuple G =
(V,E, v̂, ê), where: V is the set of vertices of the graph, each
vertex maps one normalized UI in Ā; E ⊆V ×V is the set of
edges of the graph, and each (vi,v j)∈ E represents a directly-
follows relation between the UIs mapped by vi and v j; v̂ is the
graph entry vertex, such that ∀v ∈ V@(v, v̂) ∈ E ∧@(v̂,v) ∈ E;
while ê = (v̂,v0) is the graph entry edge, such that v0 maps
ū1. We note that v̂ /∈ V , and ê /∈ E, since they are artificial
elements of the graph.

Definition 6 (CFG Path): Given a CFG G = (V,E, v̂, ê), a
CFG path is a sequence of vertices pv1,vk = 〈v1, . . . ,vk〉 such
that for each i∈ [1,k−1]⇒ vi ∈V ∪{v̂}∧∃(vi,vi+1)∈E∪{ê}.

Definition 7 (Strongly Connected Component (SCC)):
Given a graph G=(V,E, v̂, ê), a strongly connected component
(SCC) of G is a pair δ = (V̄ , Ē), where V̄ = {v1,v2, . . . ,vm} ⊆
V and Ē = {e1,e2, . . . ,ek} ⊆ E such that ∀vi,v j ∈ V̄∃pvi,v j |
∀v ∈ p⇒ v ∈ V̄ . Given an SCC δ = (V̄ , Ē), we say that δ is

3

non-trivial iff |V̄ | > 1. Given a graph G, ∆G denotes the set
of all the non-trivial SCCs in G.

Click Button
New Record

Start

Edit Field
Full Name

Edit Field
Date

Edit Field
Phone

Click Button
Submit

Fig. 2: Example of a Control-Flow Graph

The segmentation step starts with the construction of the
CFG of the input normalized UI log. It is common that a
CFG contains loops, since a loop represents the start of a new
execution of the task recorded in the UI log. Indeed, in an
ideal scenario, once a task execution ends with a certain UI
(a vertex in the CFG), the next UI (i.e. the first UI of the next
task execution) should already be mapped in the CFG and a
loop will be generated. In such case, all the vertices contained
in the loop represent the corresponding UIs that belong to the
task. If several different tasks are recorded in the UI log, the
graph would contain multiple disjoint loops, while if a task has
repetitive subtasks there would be nested loops. Fig. 2 shows
the CFG generated from the normalized UI log captured in
Table II.

After the CFG is generated, we turn our attention to the
identification of its back-edges, which can be detected by
analysing the SCCs of the CFG, as described in Algorithm 1
and Algorithm 2. Given a CFG G = (V,E, v̂, ê), we first build
its dominator tree Θ (Algorithm 1, line 2), which captures
domination relations between the vertices of the CFG. Fig. 3
shows the dominator tree of the CFG in Fig. 2.

Click Button New Record

Edit Field Full NameEdit Field Date

Edit Field Phone

Click Button Submit

Start

Fig. 3: Dominator tree

Then, we discover the set of all non-trivial SCCs (∆G)
by applying the Kosaraju’s algorithm [20] and removing the
trivial SCCs (Algorithm 1, line 3). For each δ = (V̄ , Ē) ∈ ∆G,
we discover its header using the dominator tree (Algorithm 2,
line 1). The header of a δ is a special vertex ĥ ∈ V̄ , such that
∀pv̂,v | v∈ V̄ ⇒ ĥ∈ pv̂,v, i.e. the header ĥ is the SCC vertex that
dominates all the other SCC vertices. Once we have ĥ, we can
identify the back-edges as (v, ĥ) with v ∈ V̄ (line 3). Finally,
the identified back-edges are stored and removed (lines 4 and
5) in order to look for nested SCCs and their back-edges by
recursively executing Algorithm 2 (line 11), until no more
SCCs and back-edges are found. However, if we detect an
SCC that does not have a header vertex (i.e. the SCC is
irreducible), we cannot identify the SCC back-edges. In such a

Algorithm 1: Detect Back-edges
input : CFG G
output : Back-edges Set B

1 B←∅;
2 Dominator Tree Θ← computeDominatorTree(G);
3 Set ∆G← findSCCs(G);
4 foreach δ ∈ ∆G do AnalyseSCC(δ , Θ, B);
5 return B;

Algorithm 2: Analyse SCC
input : SCC δ = (V̄ , Ē), Dominator Tree Θ, Back-edges Set B

1 Header ĥ← findHeader(δ , Θ);
2 if ĥ 6= null then
3 Set I← getIncomingEdges(δ , ĥ);
4 B← B∪ I;
5 Ē← Ē \ I;
6 else
7 Set L← findLoopEdges(δ);
8 Edge e← getTheDeepestEdge(δ , L);
9 remove e from Ē;

10 Set ∆δ ← findSCCs(δ);
11 foreach γ ∈ ∆δ do AnalyseSCC(γ , Θ, B);

case, we collect via a depth-first search of the CFG the edges
(vx,vy) ∈ Ē such that vy is topologically deeper than vx - we
call these edges loop-edges of the SCC (line 7). Then, out of
all the loop-edges, we store (and remove from the SCC) the
one having target and source connected by the longest simple
path entirely contained within the SCC (lines 8 to 9).

Given the CFG presented in Fig. 2 and its corresponding
dominator tree (see Fig. 3), we immediately identify the SCC
that consists of all the vertices except the entry vertex. Then,
by applying Algorithm 2, we identify: the SCC header – Click
Button [New Record]; and the only back-edge – (Click Button
[Submit], Click Button [New Record]), which we save and
remove from the SCC. After the removal of this back-edge,
we identify the nested SCC that contains all the three Edit
Field UIs. Note that this second SCC does not have a header
because it is irreducible, due to its multiple entries (Edit Field
[Full Name] and Edit Field [Date]). However, by applying
the depth-first search, we identify as candidate loop-edge for
removal: (Edit Field [Phone], Edit Field [Full Name]). After
we remove this edge from the CFG, no SCCs are left so that
Algorithm 2 stops its recursion.

At this point, we collected all the back-edges of the CFG,
and we can leverage this information to start segmenting the UI
log. We do so via Algorithm 3. First, we retrieve all the targets
and sources of all the back-edges in the CFG and collect their
corresponding UIs (lines 2 and 3). Each UI that is the target of
a back-edge is an eligible segment starting point (hereinafter,
segment-start UI), since a back-edge conceptually captures
the end of a task execution, therefore its target represents
the first UI of the next task execution. Following the same
reasoning, each UI that is source of a back-edge is an eligible
segment ending point (hereinafter, segment-end UI). Then, we
sequentially scan all the UIs in the UI log (line 7). When we
encounter a segment-start UI (line 9), and we are not already
within a segment (line 10), we create a new segment (s, a list
of UIs), we append the segment-start UI (ū), and we store it
in order to match it with the correct segment-end UI (lines 11

4

Algorithm 3: Identify Segments
input : Normalised UI log Σ̄, Back-edges Set B
output : Segments List Ψ

1 Set Ψ←∅;
2 Set T ← getTargets(B);
3 Set S← getSources(B);
4 Boolean WithinSegment ← false;
5 Normalised UI u0← null;
6 List s← null;

7 for i ∈
[
1,size

(
Σ̄
)]

do
8 Normalised UI ū← getUI(Σ̄, i);
9 if ū ∈ T then

10 if WithinSegment = f alse then
11 s← new List;
12 append ū to s;
13 u0← ū;
14 WithinSegment ← true;
15 else
16 append ū to s;

17 else
18 if WithinSegment = true then
19 append ū to s;
20 if ū ∈ S∧ (ū,u0) ∈ B then
21 add s to Ψ;
22 WithinSegment ← f alse;

23 return Ψ;

to 14). Our strategy to detect segments in the UI log is driven
by the following underlying assumption: a specific segment-
end UI will be followed by the same segment-start UI, so that
we can match segment-end and segment-start UIs exploiting
back-edge’s sources and targets (respectively). If the UI is not
a segment-start (line 17), we check if we are within a segment
(line 18) and, if not, we discard the UI, assuming that it is
noise since it fell between the previous segment-end UI and
the next segment-start UI. Otherwise, we append the UI to
the current segment and we check if the UI is a segment-end
matching the current segment-start UI (line 20). If that is the
case, we reached the end of the segment and we add it to the
set of segments (line 21), otherwise, we continue reading the
segment.

Table III shows the segment-start and segment-end UIs,
highlighted respectively in green and red, which also ideally
delimits the two segments within the normalized UI log.

UI UI UI Parameters and Values

Timestamp Type P1: Application P2: Element Label

1 2019-03-03T19:02:18 Click button Web New Record

2 2019-03-03T19:02:23 Edit field Web Full Name

3 2019-03-03T19:02:27 Edit field Web Date

4 2019-03-03T19:02:39 Edit field Web Phone

5 2019-03-03T19:02:47 Click button Web Submit

6 2019-03-03T19:02:58 Click button Web New Record

7 2019-03-03T19:03:13 Edit field Web Date

8 2019-03-03T19:03:24 Edit field Web Phone

9 2019-03-03T19:03:43 Edit field Web Full Name

10 2019-03-03T19:04:10 Click button Web Submit

TABLE III: Segments identification

C. Candidate routines identification

The candidate routines identification step is based on the
CloFast sequence mining algorithm [18]. To embed CloFast
in our approach, we have to define the structure of the
sequential patterns we want to identify. In this paper, we

define a sequential pattern within a UI log as a sequence of
normalized UIs occurring always in the same order in different
segments, yet allowing gaps between the UIs belonging to
the pattern. For example, if we consider the following three
segments: 〈u1,uy,u2,u3〉, 〈u1,u2,ux,u3〉, and 〈u1,ux,u2,u3〉;
they all contain the same sequential pattern that is 〈u1,u2,u3〉.
Furthermore, we define the support of a sequential pattern as
the ratio of its occurrences and the total number of segments,
and we refer to closed patterns and frequent patterns (relatively
to an input threshold) as they are known in the literature. In
particular, a frequent pattern is a pattern that appears in at
least a number of sequences indicated by the threshold, while
a closed pattern is a pattern that is not included in another
pattern having exactly the same support. By applying CloFast
to the set of the UI log segments, we discover all the frequent
closed sequential patterns.

Some of these patterns may be overlapping, which
(in this context) means they were discovered from the
same portion of a segment and share some UIs. An
example of overlapping patterns is the following, given
three segments: 〈u1,uy,u2,u3,ux,u4〉, 〈u1,uy,u2,ux,u3,u4〉, and
〈u1,ux,u2,u3,u4〉; 〈u1,u2,u3,u4〉 and 〈u1,ux,u4〉 are sequential
patterns, but they overlap due to the shared UIs (u1 and u4). In
practice, each UI belongs to only one routine, therefore, we
are interested in discovering only non-overlapping patterns.
For this purpose, we implemented an optimization that we
use on top of CloFast. Given the set of patterns discovered
by CloFast, we rank them by a pattern quality criterion (e.g.
length, frequency), and we select the best pattern (i.e. the top
rank one). Then, all its occurrences are removed from the
segments, and we search again for frequent closed patterns
performing the same procedure until there are no frequent
closed patterns left.

In our approach, we integrated four pattern quality criteria to
select the candidate routines: pattern frequency, pattern length,
pattern coverage, and pattern cohesion score [3]. Pattern
frequency considers how many times the pattern was observed
in different segments. Pattern length considers the length of the
patterns. Pattern coverage considers the percentage of the log
that is covered by all the pattern occurrences. Pattern cohesion
score considers the level of adjacency of the elements inside a
pattern and is calculated as the difference between the pattern
length and the median number of gaps between its elements.
In other words, cohesion prioritizes the patterns whose UIs
appear consecutively without (or with few) gaps while taking
into account also the pattern length. In the next section, we
compare these ranking criteria and discuss the benefits of using
one or another.

IV. EVALUATION

We implemented our approach as an open-source Java
command-line application.2 Our goal is threefold. First, we
assess to what extent our approach can rediscover routines that
are known to be recorded in the input UI logs. Second, we
analyze how the use of different candidate routines selection
criteria such as frequency and cohesion impact on the quality

2Available at https://github.com/volodymyrLeno/RPM_Segmentator

5

of the discovered routines. Last, we assess the efficiency and
effectiveness of our approach when applied to real-life UI logs.
Accordingly, we define the following research questions:
• RQ1. Does the approach rediscover routines that are

known to exist in a UI log?
• RQ2. How do the candidate routines selection criteria

affect the quality of the discovered routines?
• RQ3. Is the approach applicable in real-life settings, in

terms of both efficiency and effectiveness?

A. Datasets

To answer our research questions, we rely on a dataset
of thirteen UI logs, which can be divided into three sub-
groups: artificial logs, real-life logs recorded in a supervised
environment, and real-life logs recorded in an unsupervised
environment.3 Table IV shows the logs characteristics.

UI Log # Routine # Task # Actions # Actions per
Variants Traces trace (Avg.)

CPN1 1 100 1400 14.000
CPN2 3 1000 14804 14.804
CPN3 7 1000 14583 14.583
CPN4 4 100 1400 14.000
CPN5 36 1000 8775 8.775
CPN6 2 1000 9998 9.998
CPN7 14 1500 14950 9.967
CPN8 15 1500 17582 11.721
CPN9 38 2000 28358 14.179
Student Records (SR) 2 50 1539 30.780
Reimbursement (RT) 1 50 3114 62.280
Scholarships 1 (S1) - 693
Scholarships 2 (S2) - 509

TABLE IV: UI logs characteristics

The artificial logs (CPN1–CPN9) were generated from
Colored Petri Nets (CPNs) [5]. The CPNs have increasing
complexity, from low (CPN1) to high (CPN9). These logs are
originally noise-free and segmented. We removed the segment
identifiers to produce unsegmented logs.

The Student Records (SR) and Reimbursement (RT) logs
record the simulation of real-life scenarios. The SR log simu-
lates the task of transferring students’ data from a spreadsheet
to a Web form. The RT log simulates the task of filling
reimbursement requests with data provided by a claimant.
Each log contains fifty recordings of the corresponding task
executed by one of the authors, who followed strict guidelines
on how to perform the task. These logs contain little noise,
which only accounts for user mistakes, such as filling the form
with an incorrect value and performing additional actions to fix
the mistake. For both logs, we know how the underlying task
was executed, and we treat such information as ground truth
when evaluating our approach. Additionally, we created four
more logs (SRRT+, RTSR+, SRRT‖, RTSR‖) by combining
SR and RT. SRRT+ and RTSR+ capture the scenario where
the user first completes all the instances of one task and
then moves to the other task. These logs were generated by
concatenating SR and RT. SRRT‖ and RTSR‖ capture the
scenario where the user is working simultaneously on two
tasks. To simulate such behavior, we interleaved the segments
of SR with those of RT.

3The real-life logs were recorded with the Action Logger tool [7]. All the
logs are available at https://doi.org/10.6084/m9.figshare.12543587

Finally, the Scholarships logs (S1 and S2) were recorded by
two employees of the University of Melbourne who performed
the same task. The logs record the task of processing schol-
arship applications for international and domestic students.
The task mainly consists of students data manipulation with
transfers between spreadsheets and Web pages. Compared to
the other logs, we have no a-priori knowledge of how to
perform the task in the Scholarships logs (no ground truth).
Also, when recording the UI logs, the University employees
were not instructed to perform their task in a specific manner,
i.e. they were left free to perform the task as they would
normally do when unrecorded.

B. Setup

To answer RQ1 and RQ2, we analyzed the quality of the
segmentation and that of the discovered routines, using the first
15 logs described above (CPN1 to CPN9, SR, RT, SRRT+,
RTSR+, SRRT‖, RTSR‖) against the four candidate routines
selection criteria in Section III-C, i.e. frequency, length, cov-
erage and cohesion. To assess the quality of the segmentation,
we use the normalized Levenshtein Edit Distance (LED),
where a segment and its normalized UIs represent the string
and its characters, respectively. Precisely, for each discovered
segment, we collect all the ground truth segments that have at
least one shared UI with the discovered segment, calculate the
LED between the discovered segment and the ground truth
segments and assign the minimum LED to the discovered
segment as its quality score. Finally, we assess the overall
quality of the segmentation as the average of the LEDs of
each discovered segment.

The quality of the discovered routines is measured with the
Jaccard Coefficient (JC), which captures the level of similarity
between discovered and ground truth routines in a less strict
manner compared to LED. In fact, the JC does not penalize the
order of the UIs in a routine. This follows from the assumption
that a routine could be executed performing some actions
in different order, and the ordering should not be penalized.
The JC between two routines is the ratio n

m , where n is the
number of UIs that are contained in both routines, while m
is the total number of UIs in each of the two routines (i.e.
the sum of the lengths of the two routines). Given the set of
discovered routines and the set of ground truth routines, for
each discovered routine, we compute its JC with all the ground
truth routines and assign the maximum JC to the discovered
routine as its quality score. Finally, we assess the overall
quality of the discovered routines as the average of the JC
of each discovered routine. As the ground truth, we used the
segments of the artificial logs and the guidelines given to the
author who performed the tasks in SR and RT.

However, we cannot rely on the JC alone to assess the
quality of the discovered routines, as this measure does not
consider the routines we may have missed in the discovery.
Thus, we also measure the total coverage to quantify how
much log behavior is captured by the discovered routines. We
would like to reach high coverage with as few routines as
possible. Thus, we prioritize long routines over short ones by
measuring the average routine length alongside the coverage.

6

To answer RQ3, we tested our approach on the S1 and S2
logs and qualitatively assessed the results with the help of
the employees who performed the task. Specifically, we asked
them to compare the rediscovered routines and the actions (i.e.
UIs) they performed while recording.

All experiments were conducted on a Windows 10 laptop
with an Intel Core i5-5200U CPU 2.20 GHz and 16GB RAM.

C. Results

Table V shows the results of the segmentation. As we can
see, the LED for all the CPN logs is 0.0, highlighting that all
the segments were discovered correctly. On the other hand,
the segments discovered from the SR, RT, SRRT+, RTSR+,
SRRT‖, and RTSR‖ logs slightly differ from the original ones.
The main difference between the CPN logs and those recorded
in a controlled environment is that the former contain routines
having always the same starting UI, while the latter contain
routines with several different starting UIs.

We identified the correct number of segments from all the
logs except SRRT‖ and RTSR‖, where we could not discern the
ending UI of the routine belonging to one task and the starting
UI of the routine belonging to the other task, consequently
merging the two routines and discovering only half of the
total number of segments (50 out of 100). From the table we
can also see that the time performance of our approach is
reasonable, with maximum execution time of 3.6 seconds.

UI Log # Original # Discovered LED Exec.
Segments Segments (avg) Time

CPN1 100 100 0.000 0.571
CPN2 1000 1000 0.000 1.705
CPN3 1000 1000 0.000 0.835
CPN4 100 100 0.000 0.461
CPN5 1000 1000 0.000 1.025
CPN6 1000 1000 0.000 0.707
CPN7 1500 1500 0.000 1.566
CPN8 1500 1500 0.000 1.596
CPN9 2000 2000 0.000 3.649
SR 50 50 0.059 0.714
RT 50 50 0.095 1.662
SRRT+ 100 100 0.078 2.424
RTSR+ 100 100 0.078 2.221
SRRT‖ 100 50 0.331 2.296
RTSR‖ 100 50 0.331 2.536

TABLE V: Segmentation results

Table VI shows the quality of the discovered routines for
each selection criterion, when setting 0.1 as minimum support
threshold of CloFast. The results highlight that, overall, the
routines with the highest JC and the longest length are those
discovered using cohesion as selection criterion, followed
closely by those discovered using length as the criterion. Even
though using these criteria we do not always achieve the
highest coverage, the coverage scores are very high, i.e. above
0.90 for all the logs except CPN5.

Following these results, we decided to use cohesion as the
selection criterion to discover the routines from the schol-
arships logs. From the S1 log we discovered five routines
variants. The first routine variant consists in manually adding
graduate research student applications to the student record in
the information system of the university. The application is
then assessed, and the student is notified about the outcome.
The second routine variant consists in lodging a ticket to verify
possible duplicate applications. When a new application is

UI Logs Selection # Discovered Routine Total JC Exec.
Criterion Routines Length Coverage Time

CPN1

Frequency 1 14.00 1.00 1.000 2.643
Length 1 14.00 1.00 1.000 1.553
Coverage 1 14.00 1.00 1.000 3.702
Cohesion 1 14.00 1.00 1.000 1.530

CPN2

Frequency 3 6.33 0.99 0.452 3.908
Length 2 14.50 0.95 1.000 4.789
Coverage 2 14.00 0.99 0.964 3.166
Cohesion 2 14.50 0.95 1.000 3.730

CPN3

Frequency 4 5.75 0.95 0.511 4.682
Length 3 14.33 0.93 1.000 4.324
Coverage 3 9.67 0.96 0.833 3.940
Cohesion 3 14.33 0.93 1.000 6.237

CPN4

Frequency 1 12.00 0.86 0.857 3.452
Length 2 14.00 1.00 1.000 2.005
Coverage 1 13.00 0.93 0.929 3.351
Cohesion 2 14.00 1.00 1.000 3.655

CPN5

Frequency 6 1.67 0.86 0.206 6.418
Length 7 7.29 0.83 0.849 9.715
Coverage 4 3.75 0.80 0.462 6.587
Cohesion 8 7.5 0.86 0.910 18.206

CPN6

Frequency 3 4.67 1.00 0.485 4.250
Length 2 10.00 1.00 1.000 2.924
Coverage 3 4.67 1.00 0.485 2.483
Cohesion 2 10.00 1.00 1.000 4.678

CPN7

Frequency 7 2.43 0.91 0.257 10.118
Length 7 9.57 0.88 0.986 8.957
Coverage 6 3.67 0.91 0.385 7.203
Cohesion 7 9.43 0.93 0.971 11.983

CPN8

Frequency 5 4.20 0.75 0.337 11.801
Length 6 10.67 0.91 0.967 9.070
Coverage 5 7.60 0.89 0.618 7.354
Cohesion 5 10.67 0.91 0.967 11.250

CPN9

Frequency 5 5.20 0.82 0.401 13.784
Length 6 14.67 0.95 1.000 8.265
Coverage 5 6.60 0.88 0.511 8.603
Cohesion 6 14.67 0.95 1.000 13.943

SR

Frequency 3 10.00 0.96 0.356 3.883
Length 3 28.33 0.98 0.942 2.592
Coverage 2 15.50 0.96 0.532 2.635
Cohesion 3 28.33 0.98 0.942 3.252

RT

Frequency 3 18.67 0.90 0.290 4.63
Length 3 56.33 0.96 0.829 5.215
Coverage 2 30.50 0.45 0.446 4.709
Cohesion 3 56.33 0.96 0.829 6.585

SRRT+

Frequency 5 16.80 0.90 0.374 13.826
Length 4 45.25 0.91 0.929 7.362
Coverage 2 42.50 0.86 0.921 8.177
Cohesion 4 45.25 0.91 0.929 10.728

RTSR+

Frequency 5 16.80 0.90 0.374 12.176
Length 4 45.25 0.91 0.929 12.477
Coverage 2 42.50 0.86 0.921 9.085
Cohesion 4 45.25 0.91 0.929 14.675

SRRT‖

Frequency 3 28.00 0.90 0.313 13.905
Length 5 86.40 0.96 0.580 28.259
Coverage 3 55.00 0.95 0.391 14.894
Cohesion 5 86.40 0.96 0.580 37.277

RTSR‖

Frequency 3 28.00 0.90 0.313 12.428
Length 4 89.50 0.90 0.600 23.903
Coverage 3 55.00 0.95 0.391 10.838
Cohesion 4 89.50 0.90 0.600 38.657

TABLE VI: Quality of the discovered routines

entered in the information system and its data matches an
existing application, the new application is temporarily put on
hold, and the employee fills in and lodges a ticket to investigate
the duplicate. The remaining three routine variants represent
exceptional cases, where the employee executed either the first
or the second variant in a different manner (i.e. by altering the
order of the actions or with overlapping routines executions).
To assess the results, we showed the discovered routine variant
to the employee of the University of Melbourne who recorded
the S1 log, and they confirmed that the discovered routines
correctly capture their task executions. Also, they confirmed
that the last three routine variants are alternative executions of
the first routine variant.4

While the results from the S1 log were positive, our

4Detailed results at https://doi.org/10.6084/m9.figshare.12543587

7

approach could not discover any correct routine from the S2
log. By analyzing the results, we found out that the employee
worked with multiple worksheets at the same time, frequently
switching between them for visualization purposes only. Such
behavior recorded in the log negatively affects the construction
of the CFG and its domination tree, ultimately leading to the
discovery of incorrect segments and routines. This also had
an impact on the execution time, indeed, while it took only
41.7 seconds to discover the routines from the S1 log, it took
426.3 seconds to discover the routines from the S2 log.

D. Limitations

Our approach relies on information recorded in a UI log to
identify segments and discover routines. Thus, its effectiveness
is correlated with data quality. Since a UI log is fine-grained,
deviations occurring during the routine execution affect the
effectiveness of our approach. In our evaluation, we observed
this phenomenon to varying degrees when dealing with real-
life logs. In practice, the approach can identify correct routines
only if they are observed frequently in the UI log. Recurring
noise affects the accuracy of the results (see the S2 log).

The approach discovers multiple variants of the same rou-
tine when the UIs of a routine occur in different orders. Post-
processing the results could be beneficial in order to cluster
similar routines. Further, the approach is designed for logs
that capture consecutive routine executions. In practice, routine
instances may sometimes overlap (like in the S2 log).

Finally, while our approach is robust against routine exe-
cutions with multiple ends, it is sensitive to multiple starts.
Ideally, all routine executions should start with the same UI,
unless different starts are recorded in batch (e.g. first only
routines with a start, then routines with another start, etc.).
In general, our approach can handle logs containing multiple
different routines, provided that each routine does not share
any UIs with other routines, except their start UIs.

V. CONCLUSION AND FUTURE WORK

This paper presented an approach to automatically identify
routines from unsegmented UI logs. The approach starts by
decomposing the UI log into segments corresponding to paths
within the connected components of a Control-Flow Graph
derived from the log. Once the log is segmented, a noise-
resilient sequential pattern mining technique is used to extract
frequent patterns. The patterns are then ranked according to
four quality criteria: frequency, length, coverage, and cohesion.

The approach has been implemented as an open-source tool
and evaluated using synthetic and real-life logs. The evaluation
shows that the approach can rediscover routines injected into a
synthetic log, and that it discovers relevant routines in real-life
logs. The execution times range from seconds to a few dozen
seconds even for logs with tens of thousands of interactions.

As future work, we aim at addressing the limitations dis-
cussed above. We plan to add a post-processing step to group
multiple routine variants and to discover an aggregated model
thereof. This could be achieved by clustering the patterns
and merging them into high-level models or by adapting
a local process mining technique [21]. We plan to design
more sophisticated segmentation techniques to better handle

mixtures of multiple routines. Finally, the approach identifies
routines from a control-flow perspective insofar as it ma-
nipulates sequences of interactions, without considering their
data payload. Therefore, we plan to complement the proposed
approach with an approach to quantify the automatability of
candidate routines based on data attributes.

Acknowledgments. Work supported by the European Re-
search Council (PIX project) and by the Australian Research
Council (DP180102839).

REFERENCES

[1] H. Leopold, H. van der Aa, and H. A. Reijers, “Identifying candidate
tasks for robotic process automation in textual process descriptions,” in
BPMDS. Springer, 2018, pp. 67–81.

[2] V. Leno, A. Polyvyanyy, M. Dumas, M. La Rosa, and F. M. Maggi,
“Robotic process mining: Vision and challenges,” Business & Informa-
tion Systems Engineering, 2020.

[3] H. Dev and Z. Liu, “Identifying frequent user tasks from application
logs,” in IUI. Springer, 2017, pp. 263–273.

[4] A. Jimenez-Ramirez, H. A. Reijers, I. Barba, and C. Del Valle, “A
method to improve the early stages of the robotic process automation
lifecycle,” in CAiSE. Springer, 2019, pp. 446–461.

[5] A. Bosco, A. Augusto, M. Dumas, M. La Rosa, and G. Fortino,
“Discovering automatable routines from user interaction logs,” in BPM
Forum. Springer, 2019.

[6] J. Gao, S. J. van Zelst, X. Lu, and W. M. van der Aalst, “Automated
robotic process automation: A self-learning approach,” in OTM Confed-
erated International Conferences. Springer, 2019, pp. 95–112.

[7] V. Leno, A. Polyvyanyy, M. La Rosa, M. Dumas, and F. M. Maggi, “Ac-
tion logger: Enabling process mining for robotic process automation,”
in BPM Demos. CEUR, 2019.

[8] C. Linn, P. Zimmermann, and D. Werth, “Desktop activity mining-a new
level of detail in mining business processes,” in Workshops der INFOR-
MATIK 2018-Architekturen, Prozesse, Sicherheit und Nachhaltigkeit.
Köllen Druck+ Verlag GmbH, 2018.

[9] H. Cao, N. Mamoulis, and D. W. Cheung, “Discovery of periodic
patterns in spatiotemporal sequences,” IEEE Transactions on Knowledge
and Data Engineering, vol. 19, no. 4, pp. 453–467, 2007.

[10] Y. Zhu, M. Imamura, D. Nikovski, and E. Keogh, “Matrix profile vii:
Time series chains: A new primitive for time series data mining,” in
ICDM. IEEE, 2017, pp. 695–704.

[11] M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa, “A
framework for the evaluation of session reconstruction heuristics in web-
usage analysis,” Informs journal on computing, vol. 15, no. 2, pp. 171–
190, 2003.

[12] D. Bayomie, A. Awad, and E. Ezat, “Correlating unlabeled events from
cyclic business processes execution,” in CAiSE. Springer, 2016, pp.
274–289.

[13] D. R. Ferreira and D. Gillblad, “Discovering process models from
unlabelled event logs,” in BPM. Springer, 2009, pp. 143–158.

[14] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current
status and future directions,” Data mining and knowledge discovery,
vol. 15, no. 1, pp. 55–86, 2007.

[15] S. D. Lee and L. De Raedt, “An efficient algorithm for mining string
databases under constraints,” in International Workshop on Knowledge
Discovery in Inductive Databases. Springer, 2004, pp. 108–129.

[16] E. Ohlebusch and T. Beller, “Alphabet-independent algorithms for
finding context-sensitive repeats in linear time,” Journal of Discrete
Algorithms, vol. 34, pp. 23–36, 2015.

[17] J. Wang and J. Han, “Bide: Efficient mining of frequent closed se-
quences,” in ICDE. IEEE, 2004, pp. 79–90.

[18] F. Fumarola, P. F. Lanotte, M. Ceci, and D. Malerba, “Clofast: closed
sequential pattern mining using sparse and vertical id-lists,” Knowledge
and Information Systems, vol. 48, no. 2, pp. 429–463, 2016.

[19] V. Leno, M. Dumas, M. La Rosa, F. M. Maggi, and A. Polyvyanyy,
“Automated discovery of data transformations for robotic process au-
tomation,” ArXiv, vol. abs/2001.01007, 2020.

[20] M. Sharir, “A strong-connectivity algorithm and its applications in data
flow analysis,” Computers & Mathematics with Applications, vol. 7,
no. 1, pp. 67–72, 1981.

[21] B. Dalmas, N. Tax, and S. Norre, “Heuristic mining approaches for
high-utility local process models,” T. Petri Nets and Other Models of
Concurrency, vol. 13, pp. 27–51, 2018.

8

