
Postprint

Maximal Structuring of Acyclic
Process Models

Artem Polyvyanyy1, Luciano Garćıa-Bañuelos2,
Dirk Fahland3 and Mathias Weske1

1Hasso Plattner Institute, University of Potsdam, Germany
2Institute of Computer Science, University of Tartu, Estonia

3Eindhoven University of Technology, The Netherlands

Email: Artem.Polyvyanyy@hpi.uni-potsdam.de

This article addresses the transformation of a process model with an arbitrary
topology into an equivalent structured process model. In particular, this article
studies the subclass of process models that have no equivalent well-structured
representation but which, nevertheless, can be partially structured into their
maximally-structured representation. The transformations are performed under
a behavioral equivalence notion which preserves the observed concurrency of
tasks in equivalent process models. The article gives a full characterization of
the subclass of acyclic process models that have no equivalent well-structured
representation but do have an equivalent maximally-structured one, as well as
proposes a complete structuring method. Together with our previous results, this
article completes the solution of the process model structuring problem for the

class of acyclic process models.

Keywords: Process modeling; structured process model; maximal structuring; model
transformation; fully concurrent bisimulation

1. INTRODUCTION

Process models have become the key design artifacts
in Business Process Management (BPM) [1, 2]. They
are used to design new processes, document existing
processes, discuss process improvement, and last but
not least, drive process executions in Process-Aware
Information Systems (PAIS) [3]. Their dual role as
executable code and as means of communication among
process stake holders has raised debates and concerns
about how a particular process should be represented in
a process model. In summary, execution and analysis
favor, or even demand, specific structural properties
which are hard to adhere to when creating process
models. This renders the transformation of arbitrary
unstructured models into equivalent well-structured
models a highly relevant problem [4, 5, 6]. This article
extends the technique for structuring acyclic process
models [6] with an approach for maximal structuring
of inherently unstructured process models, i.e., a
process model that has no equivalent well-structured
representation gets partially structured to the point
where it cannot be structured further.

A process model is usually represented as a graph,

where nodes stand for tasks or decisions, and edges
encode causal dependencies between adjacent nodes.
Common process modeling notations, such as the
Business Process Model and Notation (BPMN) [7] or
Event-driven Process Chains (EPC) [8], allow process
models to have almost any topology. Structural
freedom allows for a large degree of creativity when
modeling. Nevertheless, it is often preferable that
models follow certain structural patterns. The arguably
most-agreed on structural property of process models is
structuredness [4].

A process model is (well-)structured, if for every
node with multiple outgoing arcs (a split) there is
a corresponding node with multiple incoming arcs
(a join), and vice versa, such that the fragment of
the model between the split and the join forms a
single-entry-single-exit (SESE) process component;
otherwise the model is unstructured.

Figure 1(a) shows a process model. In the figure,
every dotted box defines a process component composed
from the arcs that are inside or intersect the box. Split
u has a corresponding join z; together they define
SESE component R1. Yet, splits v and w have no

The Computer Journal



2 A. Polyvyanyy et al.

i o

y

u

v

z
R1

P1

w

x

Handle 

bank 

transfer

Handle 

credit card 

payment

Send 

confirm.

by post

Deliver 

order

Monitor 

delivery

a

b
c

d

e

(a)

i u

y

c

w
d'

o

a

z
e

v
d

x

e'

P1B1 P2

B3

B2

P4

b

P3

(b)

FIGURE 1. (a) Unstructured model, and (b) its equivalent
well-structured version

corresponding joins and, thus, the model in Figure 1(a)
is unstructured. Figure 1(b) shows a well-structured
process model, which is equivalent to the model in
Figure 1(a). Every split of the model has a corresponding
join; split u has corresponding join z, v has x, and w has
y; they define three SESE components B1, B2, and B3,
respectively. Note that Figure 1(b) uses short-names
for tasks (a, b, c . . .), which appear next to each task in
Figure 1(a).

The motivations for well-structured process modeling
are manifold: Structured models are easier to layout [9,
10]. It has been empirically shown that structured
process models are easier to comprehend and tend to
have fewer errors than unstructured ones [11]. By
transforming unstructured process models to structured
ones, one extends the applicability of process analysis
techniques which are only applicable for structured
models [12, 13] to a larger class of models and
improves translations between models captured in
different languages [14, 15, 16]. Structured process
models are preferred in the context of refactoring large
process model repositories [17, 18, 19]. Structured
process models are better suited for optimization [20].
Consequently, some process modeling languages urge for
structured modeling, e.g., Business Process Execution
Language (BPEL) [21] and ADEPT [22, 23]. However, a
modeling methodology that confines itself to “structured”
languages faces certain limitations: (i) There exist
process models that have no equivalent well-structured
version [4]; this simply means that certain processes
cannot be modeled. (ii) Structured modeling implies
design time constraints and, thus, limits creativity of
process model developers. Process modeling is carried
out by humans who undergo creative practices. Different
people can come up with different solutions to capture

Receive 

order by 

phone

i on

p

q

r

s

z

Pack 

order

Handle 

bank 

transfer

Handle 

credit card 

payment

Deliver 

order

x

v

u

w

yt

Send 

confirm.

by post

P1

R1

Receive 

order by 

post

a

b

c

d

e

f

g

(a)

a

i

b

oq z

c

d

e

f

x

u

v

w

yt
g

P1

R1

B1
sr

(b)

FIGURE 2. (a) Unstructured model, and (b) its equivalent
maximally-structured version

the very same process, for example the two process
models in Figure 1. Enforcement of structured modeling
can lower productivity of a developer. We advocate for
modeling without limitations: The modeling language
should provide process model developers with a maximal
degree of structural freedom to describe processes.
Afterwards, scientific methods can propose (upon request
and whenever possible) alternative formalizations that
are “better” structured, preferably well-structured.
Therefore, one should be allowed to specify the model
as in Figure 1(a) and, if requested, the equivalent
structured model, as in Figure 1(b), should be
constructed automatically. Alternatively, unstructured
models can result from model synthesis techniques such
as process mining [24]; structuring can then be applied
to improve the readability of the mined models.

In a previous work [6], we proposed a technique to
automatically transform acyclic process models with
arbitrary topologies into equivalent well-structured
models. The structuring is accomplished under a
strong notion of behavioral equivalence, called fully
concurrent bisimulation [4, 6]. As an outcome, the
resulting well-structured models describe the same share
of concurrency as the original unstructured models. It
was shown in [4] (by means of a single example) and
confirmed in [6] (for the general case of acyclic models)
that there exist process models that do not have an
equivalent well-structured representation. Figure 2(a)
is an example of a model which has no equivalent well-
structured version. Though not completely structurable,
the model can be partially structured to result in
its maximally-structured version. Intuitively, maximal
structuring should be understood as follows.



Maximal Structuring of Acyclic Process Models 3

A process model P is maximally-structured, if
every process model that is equivalent to P has at
most the same number of SESE components defined
by pairs of split and join nodes as P .

Here, SESE components composed of a single arc or a
sequence of arcs, are ignored during comparison as they,
in isolation, do not contribute to structural complexity.
Figure 2(b) shows a maximally-structured version of
the model in Figure 2(a). Though not well-structured,
the model in Figure 2(b) is “better” structured than
its equivalent model in Figure 2(a). The maximally-
structured model has two SESE components B1 and
R1 defined by the split-join pairs (q, r) and (s, z),
respectively, as compared to one component R1 defined
by the split-join pair (n, z) in Figure 2(a). Moreover,
there exists no process model which describes the same
process as the models in Figure 2 and shows more
structure, that is, has more SESE components.

After the initial investigations in [25], this article gives
for the first time a complete solution to the problem
of maximal structuring of acyclic process models. We
characterize the class of acyclic process models which do
not have an equivalent well-structured representation,
but which can, nevertheless, be maximally-structured;
and we provide a complete structuring method. Together
with the results in [6], this article completes the
structuring technique for the class of acyclic process
models.

p1

p2

p3

s1

m1
C1

C2 C3

APM

FIGURE 3. Behavioral equivalence relation on the set of
all acyclic process models and its three equivalence classes

Figure 3 visualizes the overall setting of the process
model structuring problem. In that figure, region
APM represents the set of all Acyclic Process Models,
where every dot inside the region represents a model:
p1, p2, and p3 represent process models which are
subjects for structuring. The behavioral equivalence
relation is an equivalence relation on APM [26]. C1,
C2, and C3 are the equivalence classes of the behavioral
equivalence relation that contain models p1, p2, and
p3, respectively. Every equivalence class contains the
set of all behaviorally equivalent process models. The
task of structuring is to answer the question whether an
equivalence class contains a model which is “better”

structured than a given one from the same class,
preferably a well-structured one. In our example, class
C1 contains well-structured model s1 (e.g., C1 is the
class which contains the models from Figure 1), class C2

contains no well-structured but a maximally-structured
model m1 (e.g., C2 is the class with the models from
Figure 2), whereas class C3 contains no models which
exhibit more structure than model p3 and, thus, p3
is inherently unstructured. In this article, we give an
answer to the problem of structuring acyclic models.

The remainder of this article proceeds as follows:
The next section discusses related work on structuring
sequential programs and process models. Afterwards,
Section 3 gives preliminary definitions which we shall
use later to convey our findings. In Section 4,
we formally define the “well-structured” property of
process models. Section 5 discusses the structuring
technique proposed in [6]. The technique is summarized
as a chain of transformations. We define for the
first time the notion of the proper complete prefix
unfolding which was sketched in [6] and which is
essential for obtaining sufficient behavioral information
to allow maximal structuring. Section 6 motivates and
defines the “maximally-structured” property of process
models. Afterwards, Section 7 extends the structuring
technique from Section 5 for maximal structuring
of process models that do not have an equivalent
well-structured representation. Section 8 presents an
empirical evaluation of the structuring method on a set
of process models taken from industrial practice. Finally,
we draw conclusions.

2. RELATED WORK

Our setting is close to the problem of structuring
flowcharts and sequential programs, which has been
extensively studied for years. In one of his letters, Edsger
W. Dijkstra started a discussion with a provocative
title “Go To Statement Considered Harmful” [27].
In the absence of Go To statements, programs are
composed of structured flow constructs only, situation
that corresponds to our notion of well-structured process
models without concurrency constructs. The main
idea communicated in the letter is that in the context
of sequential programs the Go To statement should
be abolished from all “higher level” programming
languages. Since that time, many replies to the letter
supported or rejected the statement of Dijkstra, for
instance [28, 29, 30, 31], with no side being able to
provide sound arguments to disarm one another. The
partial resolution of the conflict became possible due
to many works on formal techniques for translating
unstructured programs with Go To statements into
equivalent structured programs [32, 33, 34, 35]. The
main outcome of these endeavors is that any sequential
program can be structured with only one control flow
pattern, viz. forward jump from a loop, requiring
introduction of fresh control variables in structured



4 A. Polyvyanyy et al.

programs [34]; other flow patterns can be structured
by employing code duplications and structured control
flow constructs like if-then-else or while-do.

The results on structuring sequential programs do
not hold for process models which comprise concurrency.
One of the earliest studies on the problem of structuring
process models is that of Kiepuszewski et al. [4]. The
authors showed that not all acyclic process models can
be structured by putting forward a counter-example,
which essentially boils down to the one in Figure 4
(also known as Z-structure, due to the configuration
of causal relations between the tasks). The authors
showed that there is no well-structured process model
that is equivalent to this one under the fully concurrent
bisimulation equivalence notion. They do explore
some causes of unstructuredness, but neither give a
full characterization of the class of models that can
be structured, nor do they define any automated
transformation.

i
a

b

c

d

ow

x

y

z
R1

P1

FIGURE 4. Process model (Z-structure)

Some work has been devoted to the characterization
of sources of unstructuredness in process models. In [5],
the authors present a taxonomy of unstructuredness,
that covers acyclic and cyclic models. The taxonomy is
based on the notion of improper nesting and mismatched
pairs. The taxonomy allows to analyze unstructured
process models, determine whether they are well-
behaved, and whether they can be transformed into
equivalent structured models. However, the taxonomy
is incomplete, as it does not cover all possible cases
of process models that can be structured. Besides,
the authors do not define an automated algorithm for
structuring unstructured process models.

Other methods simply reuse techniques for struc-
turing flow charts and sequential programs in order to
partly structure process models. [36] proposes a method
for structuring sequential parts of a process model based
on Go To program transformations, and extends this
method to process graphs where concurrent parts are al-
ready structured. This method cannot deal with process
models which comprise unstructured concurrent threads
of control. A similar remark applies to [37], where au-
thors concentrate on structuring of unstructured cyclic
flows. In [38], a translation from (unstructured) Petri
nets to (structured) BPEL processes is proposed. While
the proposed method can handle unstructured concur-
rent threads of control, it does so by directly expressing
them in terms of BPEL’s flow activity and links. Put
differently, the method identifies the already structured

TABLE 1. Contribution of this article (⋆) in the light of our
previous work and related work on fundamental structuring
techniques; − (no structuring), ○ (partial structuring), +
(complete structuring)

[34] [4] [5] [6] ⋆

xor (flow charts/programs) + - - - -
and (well-struct.) - ○ ○ + +
and (inh. unstr.) - ○ ○ + +
and (maximal) - - - - +
xor/and acyclic (well-struct.) - ○ ○ + +
xor/and ac. (inh. unstr.) - ○ ○ + +
xor/and ac. (maximal) - - - - +
xor/and cyclic - ○ ○ - -

parts of the process model, but provides no means for
structuring the unstructured parts.

In [39], the authors outline a classification of process
components (parts of process models) using region
trees. The authors mention that region trees can be
employed to transform unstructured process models into
well-structured ones, however they do not provide a
structuring method, even for acyclic models. In [40], the
authors study the influence of “hidden” unstructuredness
in process models on their correctness.

Table 1 summarizes related work on structuring
techniques [34, 4, 5, 6] and illustrates contributions
of this article. Columns of the table correspond
to different techniques, whereas rows correspond to
different levels of process model expressiveness and
its structural properties. The structuring problem is
solved for flow charts/sequential programs (xor logic,
acyclic or cyclic) by compiler techniques, e.g., [34],
see the “+” sign in the first row, first column. First
partial solutions for structuring of process models
with concurrency (and only and mixed xor/and logic,
acyclic or cyclic) were proposed in [4, 5]. These two
techniques took different approaches to classify sources of
unstructuredness, but they do not provide the complete
characterization, see the “○” signs in the table. The
technique proposed in [6] completely structures acyclic
process models with xor/and logic that have a well-
structured representation and it is capable of recognizing
inherently unstructured process models. All mentioned
techniques fail on structuring models with xor/and logic
that are inherently unstructured but have parts that
can be structured, i.e., they fail to achieve maximal
structuring. The technique proposed in this article
addresses this problem for acyclic models. Note that xor
only structuring, e.g., [34], is reused by other techniques
including the one in this article, whenever components
with xor only logic occur, see the “-” signs in the first
row and the first column of the table.

To sum up, to the best of our knowledge, existing
techniques approach structuring of process models with
concurrency rather superficially. Existing structuring
techniques either drop the requirement of preserving
concurrency described in the unstructured process model,



Maximal Structuring of Acyclic Process Models 5

or the “problematic” parts of the process model are not
structured at all and, hence, unstructuredness remains
in the resulting process model. The technique proposed
in this article allows to overcome these shortcomings.

3. PRELIMINARIES

In this section, we introduce some formal notions that
will be used later to convey findings.

3.1. Process Models and Nets

In the Introduction, process models were presented
in a rather informal way. This section introduces all
subsequently required formal notions on process models.

Definition 3.1 (Process model). A process model
P = (A,G,C, type,A, µ) has a non-empty set A of
tasks, a set G of gateways, A ∩ G = ∅, and a set
C ⊆ (A ∪ G) × (A ∪ G) of control flow arcs of P ;
type ∶ G → {xor ,and} assigns to each gateway a type;
µ ∶ A→ A assigns to each task a name from A, τ ∈ A.

A ∪G are the nodes of P ; a node x ∈ A ∪G is a source
(sink), iff ●x = ∅ (x● = ∅), where ●x (x●) stands for
the set of immediate predecessors (successors) of x. We
assume P to have a single source and a single sink;
both are tasks. For a task a ∈ A, if µ(a) ≠ τ , then a is
observable; otherwise, a is silent. Every node of P is on
a path from the source to the sink. Each task a ∈ A has
at most one incoming and at most one outgoing arc, i.e.,
∣●a∣ ≤ 1 ∧ ∣a●∣ ≤ 1. Each gateway g ∈ G is either a split
(∣●g∣ = 1 ∧ ∣g●∣ > 1) or a join (∣●g∣ > 1 ∧ ∣g●∣ = 1).

We adopt a notation similar to BPMN for visualizing
process models as shown in Fig. 1 and 2: a round
rectangle represents a task, the name is inscribed; a
45○-rotated square represents a gateway, an inscribed ×
(+) denotes an xor (and) gateway. The round nodes i
and o in Figure 1(a) are silent tasks. Their role is rather
technical: to ensure the existence of the source and sink
tasks. The semantics of process models is defined by a
mapping to Petri nets.

Definition 3.2 (Petri net). A Petri net, or a net,
N = (P,T,F ) has finite disjoint sets P of places and T of
transitions, and the flow relation F ⊆ (P × T ) ∪ (T ×P ).
For a node x ∈ P ∪ T , ●x = {y ∣ (y, x) ∈ F} is the
preset, whereas x● = {y ∣ (x, y) ∈ F} is the postset of x;
Min(N) denotes the set of nodes of N with an empty
preset. A node x ∈ P ∪ T is an input (output) node of
a node y ∈ P ∪ T , iff x ∈ ●y (x ∈ y●). For X ⊆ P ∪ T , let
●X = ⋃x∈X ●x and X● = ⋃x∈X x●. For a binary relation
R (e.g., F or C), we denote by R+ the transitive closure,
and by R∗ the reflexive and transitive closure of R.

In the following, we assume that all nets are T-
restricted, that is, every transition of a net has at least
one input and at least one output place. If this is not
the case, we assume the natural completion of the net:
the net gets modified so that a transition without an
input (output) place gets a single input (output) place.

a

a

a

b

b
x

x

y

y y

ta

pa,b

tb

ta

pa,y ty

ta

py

tx

tx

px,b

px,y ty

tb

b

x

x

x

x

y

y

y

tx py

px

px

px pytx,y

tx,y

tx,b

tb

ty

px,b

px,y

FIGURE 5. Mapping process models to nets

Often, it is useful to distinguish between observable
and silent transitions of a net; this distinction can be
made formal by labeling transitions. A labeled net
N = (P,T,F,T , λ) consists of a net (P,T,F ) and a
function λ ∶ P ∪ T → T that assigns each node a label
from T , τ ∈ T . If λ(t) ≠ τ , then t is observable; otherwise,
t is silent. We require all places of a labeled net to be
silent, i.e., ∀p ∈ P ∶ λ(p) = τ .

Petri nets have precise execution semantics grounded
on formal notions of states and state transitions, which
are defined in terms of a “token game.” A state of
a net is represented by a marking which describes a
distribution of tokens on the net’s places. Whether a
transition is enabled at a marking depends on the tokens
in its input places. An enabled transition can occur,
which leads to a new marking of the net.

Technically, we identify the flow relation F with its
characteristic function on the set (P ×T )∪(T ×P ). Then,
the semantics of nets can be formalized as follows.

Definition 3.3 (Semantics).
Let N = (P,T,F ) be a net.
○ M ∶ P → N0 is a marking of N assigning each place
p ∈ P a natural number M(p) of tokens in p; N0 is
the set of natural numbers including 0. [p] denotes
the marking where place p contains just one token
and all other places contain no tokens. We identify
M with the multiset containing M(p) copies of p,
for every p ∈ P .

○ For a transition t ∈ T and a marking M of N , t is
enabled at M , written M[t⟩, iff ∀p ∈ ●t ∶M(p) ≥ 1.

○ If t ∈ T is enabled at M , then t can occur, which
leads to a new marking M ′ and the step M[t⟩M ′

of N with M ′(p) =M(p) − F (p, t) + F (t, p), p ∈ P .
○ A net system, or a system, is a pair (N,M0), where
N is a net and M0 is a marking of N . M0 is called
the initial marking of N .

○ A marking Mn is reachable in (N,M0), written
Mn ∈ [N,M0⟩, iff there exists a run of N , i.e., a
sequence M0[t0⟩M1[t1⟩ . . .Mn of steps of N that
reaches Mn.

In this article, the structural subclass of free-choice nets



6 A. Polyvyanyy et al.

is particularly relevant to us. The free-choice property
guarantees that if two transitions share an input place,
then every reachable marking of the system enables
either both of these transitions or none of them [41, 42].

Definition 3.4 (Free-choice net). A net N =
(P,T,F ) is free-choice, iff ∀ p ∈ P, ∣p ● ∣ > 1 ∶ ●(p●) = {p}.

Every process model (Definition 3.1) can be mapped to
a corresponding labeled free-choice net with a special
structure, called WF-net [43, 6].

Definition 3.5 (WF-net, WF-system). A Petri net
N = (P,T,F ) is a workflow net, or a WF-net, iff N
has a dedicated source place i ∈ P , with ●i = ∅, N
has a dedicated sink place o ∈ P , with o● = ∅, and the
short-circuit net N⋆ = (P,T ∪ {t⋆}, F ∪ {(o, t⋆), (t⋆, i)}),
t⋆ ∉ T , of N is strongly connected. A WF-system is a
net system (N,M0), where M0 = [i].
The results of this article are independent of the
specific mapping between process models and nets.
Subsequently, we shall employ the mapping from [6];
a process model is translated into a net by transforming
each of its control flow arcs to the corresponding net
fragment as shown in Figure 5.

ta

tu,a

tu,b

i

pu,a

pu,b
tw

pa,v
tv px

td

tx,d px,d

tc

pw,c py

te

ty,e py,e

tz o

pe,z

pd,z

tb

pb,w

FIGURE 6. WF-net that corresponds to component R1 of
the process model in Figure 1(a)

The WF-net in Figure 6 corresponds to component
R1 of the process model in Figure 1(a). Each task of the
model is mapped to a transition with its name as a label,
for instance λ(ta) = “Handle credit card payment ′′.
The empty boxes represent silent transitions labeled
τ . Note that silent tasks must be mapped to silent
transitions (not shown in Figure 5). The execution
semantics of the resulting net system4 defines the
semantics of the process model.

Soundness and safeness are basic properties of WF-
systems [44]. Soundness states that every execution of
a WF-system ends with a token in the sink place, and
once a token reaches the sink place, no other tokens
remain in the net. Safeness refers to the fact that there
is never more than one token in the same place.

Definition 3.6 (Liveness, Safeness, Soundness).
○ A system (N,M0) is live, iff for every reachable

marking M ∈ [N,M0⟩ and t ∈ T , there exists a
marking M ′ ∈ [N,M⟩, such that (N,M ′)[t⟩.

4Note that when we refer to a net without a marking as to
a net system, we assume its canonical initial marking that puts
one token at every place without incoming arcs and no tokens
elsewhere.

○ A system (N,M0) is bounded, iff the set [N,M0⟩
is finite. A system (N,M0) is safe, iff ∀ M ∈
[N,M0⟩ ∀ p ∈ P ∶M(p) ≤ 1.

○ A WF-system (N,Mi) with N = (P,T,F ) is sound,
iff the short-circuit system (N⋆,Mi) is live and
bounded.

In our work, we require process models to be sound,
with the intuition that a process model is sound, iff its
corresponding WF-system is sound. As a sound free-
choice WF-system is guaranteed to be safe [45], the rest
of the article deals with sound and safe process models.

3.2. Unfoldings

An unfolding of a net system is another net that explicitly
represents all runs of the system in a possibly infinite,
tree-like structure [46, 47]. In [48], McMillan proposed
an algorithm to construct a finite initial part of the
unfolding, which contains full information about the
reachable markings of the system, viz. a complete prefix
unfolding. Next, we present main notions of the theory
of unfoldings, starting with ordering relations between
pairs of nodes in a net.

Definition 3.7 (Ordering relations).
Let N = (P,T,F ) be a net and let x, y ∈ P ∪ T be its
nodes.
○ x and y are in causal relation, written x↝N y, iff

(x, y) ∈ F +. y and x are in inverse causal relation,
written y ↜N x, iff x↝N y.

○ x and y are in conflict, x #N y, iff there exist
distinct transitions t1, t2 ∈ T , s.t. ●t1 ∩ ●t2 ≠ ∅,
and (t1, x), (t2, y) ∈ F ∗. If x #N x, then x is in
self-conflict.

○ x and y are concurrent, x ∣∣N y, iff neither x↝N y,
nor y ↝N x, nor x #N y.

The set RN = {↝N ,↜N ,#N , ∣∣N} forms the ordering
relations of N .

In the following we omit subscripts of ordering relations
where the context is clear. A structure of an unfolding
is given by an occurrence net.

Definition 3.8 (Occurrence net).
A net N = (B,E,G) is an occurrence net, iff : for all
b ∈ B holds ∣ ● b∣ ≤ 1, N is acyclic, for each x ∈ B ∪E the
set {y ∈ B ∪E ∣ (y, x) ∈ G+} is finite, and no e ∈ E is in
self-conflict.

The elements of B and E are called conditions and
events, respectively. Any two nodes of an occurrence
net are either in causal, inverse causal, conflict, or
concurrency relation [49]. A branching process of
a system S is an occurrence net where each event
represents the occurrence of a transition of S. The
unfolding of S is simply its largest branching process.

The relation between S and its branching processes
technically builds on a homomorphism that preserves
the nature of nodes and the environment of transitions.
Let N1 = (P1, T1, F1) and N2 = (P2, T2, F2) be nets. A



Maximal Structuring of Acyclic Process Models 7

homomorphism from N1 to N2 is a mapping h ∶ P1∪T1 →
P2 ∪ T2, such that: h(P1) ⊆ P2 and h(T1) ⊆ T2, and for
all t ∈ T1, the restriction of h to ●t is a bijection between
●t in N1 and ●h(t) in N2; correspondingly for t● and
h(t)●.

Definition 3.9 (Branching process).
A branching process of a system S = (N,M0) is a pair
β = (N ′, ν), where N ′ = (B,E,G) is an occurrence net
and ν is a homomorphism from N ′ to N , such that:

○ the restriction of ν to Min(N ′) is a bijection
between Min(N ′) and M0, and

○ for all e1, e2 ∈ E holds if ●e1 = ●e2 and ν(e1) = ν(e2),
then e1 = e2.

The system S is referred to as the originative system of
a branching process. The branching processes of S are
ordered by their prefix relation.

Definition 3.10 (Prefix relation).
Let β1 = (N1, ν1) and β2 = (N2, ν2) be two branching
processes of a system S = (N,M0). β1 is a prefix of
β2 if N1 is a subnet of N2, such that: if a condition
belongs to N1, then its input event in N2 also belongs
to N1, if an event belongs to N1, then its input and
output conditions in N2 also belong to N1, and ν1 is the
restriction of ν2 to nodes of N1.

A maximal branching process of S with respect to the
prefix relation is called unfolding of the system. In [46],
it is shown that every system has an (up to isomorphism)
unique unfolding. Finally, a complete prefix unfolding of
S is a special branching process of S: it is obtained by
truncating the unfolding at events where the information
about reachable markings starts to be redundant.

Definition 3.11 (Complete prefix unfolding).
Let β = (N ′, ν), N ′ = (B,E,G), be a branching process
of a system S = (N,M0).
○ A configuration C of β is a set of events, C ⊆ E,

such that: (i) C is causally closed, i.e., e ∈ C implies
that for all e′ ∈ E, e′ ↝ e implies e′ ∈ C, and (ii) C is
conflict-free, i.e., for all e1, e2 ∈ C holds ¬(e1 # e2).

○ A local configuration of an event e ∈ E is the set of
events that precede e, written ⌈e⌉ = {e′ ∈ E ∣ e′ ↝ e}.

○ A set of conditions of an occurrence net is a co-set
if its elements are pairwise concurrent. A maximal
co-set with respect to inclusion is a cut.

○ Each finite configuration C of β induces the cut
Cut(C) = (Min(N ′) ∪C●) ∖ ●C that represents the
reachable marking Mark(C) = ν(Cut(C)) of S.

○ β is complete if for each reachable marking M of
S there exists a configuration C in β, such that:
(i) Mark(C) =M , i.e., M is represented in β, and
(ii) for each transition t enabled at M in N , there
exists a configuration C ∪ {e} in β, such that e ∉ C
and ν(e) = t.

○ A partial order ⊲ on the configurations of β is
an adequate order iff (i) ⊲ is well-founded, (ii)
C1 ⊂ C2 implies C1 ⊲ C2, and (iii) If C1 ⊲ C2

and Mark(C1) = Mark(C2), then ⊲ is preserved

ea

eu,a

i

cu,a ca,v
ev

cx

ed

ex,d cx,d

cy

ee

ey,e cy,e

ez o

ce,z

cd,z

eu,b cu,b
ew

c'x

ec

cw,c c'y

e'd

e'x,d c'x,d c'd,z
eb

cb,w

FIGURE 7. Complete prefix unfolding of the system in
Figure 6

for all finite extensions of C1, i.e., the “future” after
Cut(C1) and Cut(C2) is isomorphic, see [50] for
details.

○ An event e ∈ E is a cutoff event induced by ⊲, iff
there exists a corresponding event corr(e) ∶= e′ ∈ E
such that Mark(⌈e⌉) = Mark(⌈e′⌉) and ⌈e′⌉ ⊲ ⌈e⌉.

○ β is the complete prefix unfolding induced by ⊲, iff
β is the greatest prefix of the unfolding of S that
contains no event after a cutoff event.

Figure 7 shows a complete prefix unfolding of the system
in Figure 6. We write cx, c

′
x, c

′′
x, . . . for conditions that

are the occurrences of place px; correspondingly for
events. In the prefix, event ec is a cutoff event, whereas
event ev is its corresponding event; this relation is
visualized by a dotted arrow. Both events reach the
marking {x, y} represented by the cuts {cx, cy} and
{c′x, c′y}, respectively. The size of the prefix depends
on the “quality” of the adequate order used to perform
the truncation. It has been shown that the adequate
order proposed in [50] results in more compact prefixes
compared to the one suggested in [48].

4. WELL-STRUCTURED MODELS

In the Introduction, we proposed an intuitive definition
of the well-structured property of process models. In
this section, we give a formal form to that intuition. We
propose a structural classification for process models
based on the properties of its parse tree. The Refined
Process Structure Tree (RPST) is a technique to parse
process models into a collection of its fragments, each
with a single entry and single exit. The notion of the
RPST fragment coincides with the notion of the SESE
component used in the intuitive definition of a well-
structured process model.

Let P = (A,G,C, type,A, µ) be a process model. A
fragment of P is defined by a pair (V,E) of nodes
V ⊆ A ∪ G and arcs E ⊆ C, such that each arc in E
connects only nodes in V . A set F ⊆ C of arcs induces
the fragment PF = (VF , F ) formed by F where VF is the
smallest set of nodes such that (VF , F ) is a fragment.

Definition 4.1 (Interior, Boundary, Entry, Exit).
Let P = (A,G,C, type,A, µ) be a process model and

let PF = (VF , F ) be a connected fragment of P that is



8 A. Polyvyanyy et al.

formed by a set F ⊆ C of control flow arcs.

○ A node x ∈ VF is interior with respect to PF , iff it
is connected only to nodes in VF ; otherwise v is a
boundary node of PF .

○ A boundary node u of PF is an entry of PF , iff no
incoming edge of u belongs to F or all outgoing
edges of u belong to F .

○ A boundary node v of PF is an exit of PF , iff no
outgoing edge of v belongs to F or all incoming
edges of v belong to F .

A process component is a fragment of a process model
with specific boundary nodes.

Definition 4.2 (Process component).
Let P = (A,G,C, type,A, µ) be a process model and
let PF = (VF , F ) be a connected fragment of P that is
formed by a set F ⊆ C of control flow arcs. F is a process
component, or a component, of P , if PF has exactly two
boundary nodes: one is an entry and the other is an exit
of PF .

By definition, the source of a process model is an entry
to every component it belongs to, whereas the sink of
a process model is an exit from every component it
belongs to. In contrast to a fragment, we identify a
process component only by its set of arcs. We say that
two components F,F ′ are nested if F ⊆ F ′ or F ′ ⊆ F .
They are disjoint if F ∩F ′ = ∅. If they are neither nested
nor disjoint, we say that they overlap. The RPST of a
process model is a collection of its special components,
viz. canonical process components.

Definition 4.3 (Canonical process component).
Let P be a process model. A process component of P is
canonical, iff it does not overlap with any other process
component of P .

Finally, the RPST of a process model is composed of its
canonical process components.

Definition 4.4 (The refined process structure tree).
The refined process structure tree (RPST ) of a process

model is the set of all its canonical process components.

It follows that any two canonical process components
are either nested or disjoint and, thus, they form a
compositional containment hierarchy. This hierarchy
can be shown as a tree, where the parent of a canonical
component F is the smallest canonical component that
contains F . Hence, the root of the tree is the entire
model, whereas the leaves are the control flow arcs.

Every box with a dotted border in Figure 1 and
Figure 2 defines a canonical process component which
is composed of the arcs that are inside or intersect the
box. Figure 8 shows an alternative visualization of
the hierarchies of canonical process components, where
every node represents a component and edges hint at
the containment relation of components. Figure 8(a)
and Figure 8(b) show (somewhat simplified) RPSTs

P1

R1

(a)

P1

B1

P2 P3

B2 B3

P4

(b)

FIGURE 8. The (simplified) RPSTs of the process models
of Figure 1

of the process models in Figure 1(a) and Figure 1(b),
respectively.

According to [51, Section 3.1], every canonical
component of a process model belongs to one out of
four structural classes. The names of the structural
classes are borrowed from the types of the triconnected
components of graphs, which are employed to construct
the RPST, see [51] for details.

Definition 4.5 (Component classes).
Let F be a component of a process model P .
○ F is a trivial component, iff F is singleton.
○ F is a polygon component, iff there exists a sequence

(r0, . . . , rn), n ∈ N, of canonical components of P ,
s.t. F = ⋃i=n

i=0 ri, the entry of F is the entry of r0,
the exit of F is the exit of rn, and the exit of rj is
the entry of rj+1, 0 ≤ j < n.

○ F is a bond component, iff there exists a set R
of canonical components of P , s.t. F = ⋃r∈R r and
every component in R has the same boundary nodes
as F .

○ F is a rigid component, iff F is neither a trivial,
nor a polygon, nor a bond component.

The names of components in Figures 1, 2, and 8 hint
at their structural class, e.g., P1 is a polygon, B1
is a bond, and R1 is a rigid component. In these
figures, we do not explicitly show simple components,
i.e., trivial components or polygons composed of
two trivial components. Hence, we refer to the
respective RPSTs as simplified ones. To exemplify
the concepts, we refer to the models in Figure 1.
For instance, polygon P1 in Figure 1(a) is composed
of trivials {(i, u)}, {(z, o)} and rigid R1, while
bond B1 in Figure 1(b) is composed of polygons
P2 and P3. Polygons {(u, a), (a, v)}, {(u, b), (b,w)},
{(w, c), (c, y)}, {(x, d), (d, z)}, {(y, e), (e, z)} are the
simple components inside rigid R1 in Figure 1(a). For a
complete visualization of the RPST, the trees in Figure 8
have to be refined with these simple components.

The RPST of a process model is unique [52]. Moreover,
the canonical components of a process model define
all its SESE components, where non-canonical SESE
components can be derived as subsets of polygons and
bonds.



Maximal Structuring of Acyclic Process Models 9

With all of the above, the well-structuredness property
of a process model can be defined in terms of its RPST.

Definition 4.6 (Well-structured model).
A process model is (well-)structured, iff its RPST
contains no rigid process component; otherwise the
model is unstructured.

The process model in Figure 1(b) contains no rigids and
is structured, while the process model in Figure 1(a)
contains rigid R1 and is, therefore, unstructured.

In order to introduce the formal definition of the
maximally-structured property of a process model,
one needs first to understand the structuring method
proposed in Section 5 and its limitations. We return to
maximal structuring in Section 6, where we take a closer
look at the structuring scenario depicted in Figure 2.

5. STRUCTURING

This section discusses the technique for structuring
acyclic process models from [6]. We elaborate further
on the technique by proposing the notion of the proper
complete prefix unfolding for the first time; we shall see
that this type of prefix is essential to achieve maximal
structuring.

WF-systems

Well-

structured 

process 

models

Process 

models

Proper 

complete 

prefix 

unfoldings

Ordering 

relations 

graphs

FIGURE 9. Structuring chain, see [6]

Figure 9 shows the chain of phases that collectively
compose the structuring technique. A process model
first is decomposed into the hierarchy of its process
components. Each component is a process model by
itself and either well-structured or unstructured. An
unstructured process component can in some cases be
transformed into a well-structured one. For this purpose,
the component is translated into a WF-system for which
the ordering relations of its tasks are derived from
its proper complete prefix unfolding. If the ordering
relations have certain properties, the unstructured
component can be replaced by a hierarchy of smaller well-
structured components that define the same ordering
relations. The equivalence of the resulting process model
with the original unstructured one is guaranteed by the
results presented in [53].

In the following, we present each phase of the
structuring in detail. We employ the process model
in Figure 1(a) to exemplify all structuring phases. Later,
in Section 7, we extend the technique to allow maximal
structuring.

5.1. From process models to unfoldings

A process model is well-structured, if and only if its
RPST contains no rigid component (Definition 4.6).
Therefore, an unstructured process model can be

structured by traversing its RPST bottom-up and
replacing each rigid component by its equivalent well-
structured component. The difficult step is to find this
equivalent well-structured component.

The key idea of structuring is to refine a rigid
component R, i.e., a node of the RPST, by a subtree
of well-structured RPST nodes which define the same
behavioral (ordering) relations between the child RPST
nodes of R. The first step for refining R is to compute
the ordering relations of R’s child nodes. We obtain
these by constructing a complete prefix unfolding of
R’s corresponding WF-system. The complete prefix
unfolding captures information about all reachable
markings of the originative system, but has a simpler
structure as it is an occurrence net (Definition 3.8).
To capture all well-structuredness contained in R, the
complete prefix unfolding must have a specific shape,
called proper.

Definition 5.1 (Proper complete prefix unfolding).
Let β = (N ′, ν), N ′ = (B,E,G), be a branching process
of an acyclic system S = (N,M0).
○ A cutoff event e ∈ E of β induced by an

adequate order ⊲ is healthy, iff Cut(⌈e⌉) ∖ e● =
Cut(⌈corr(e)⌉) ∖ corr(e)●.

○ β is the proper complete prefix unfolding, or the
proper prefix, induced by an adequate order ⊲, iff
β is the greatest prefix of the unfolding of S that
contains no event after a healthy cutoff event.

A proper prefix contains all information about well-
structuredness, i.e., all paired gateways of splits and
joins, in a rigid in the following way: A proper prefix β
represents each xor split as a condition with multiple
post-events; each xor join is identified by the post-
conditions of a cutoff event e and its corresponding event.
The notion of a cutoff event guarantees that β contains
every xor split and join. An important observation here
is that corresponding pairs of xor splits and joins are
always contained in the same branch of β. An and
split manifests as an event with multiple post-conditions
in β, whereas an and join is an event with multiple
pre-conditions. The healthiness requirement on cutoff
events ensures that concurrency after an and split is
kept encapsulated: when several concurrent branches
are introduced in the unfolding they are not truncated
until the point of their synchronization, i.e., the and
join. Such an intuition supports our goal to derive a well-
structured process model, because bonds of a process
model that define concurrency must be synchronized in
the same branch of the model where they forked.

Figure 10 shows a proper prefix of the system in
Figure 6, which corresponds to the rigid component R1
in Figure 1(a). Note that in our example, the proper
prefix is different from the (non-proper) complete prefix
unfolding of the system shown in Figure 7, and happens
to be the unfolding of the system. This is not the general
case; Figure 11 shows a complete prefix unfolding of the
running example in [6] which is proper and smaller than



10 A. Polyvyanyy et al.

ea

eu,a

i

cu,a ca,v
ev ez o

eu,b ew e'z o'

cy

ee

ey,e cy,e ce,z

cx

ed

ex,d cx,d cd,z

c'x
e'd

e'x,d c'x,d c'd,z

ec

cw,c c'y

e'e

e'y,e c'y,e c'e,z
eb

cu,b cb,w

FIGURE 10. Proper complete prefix unfolding of the
system in Figure 6

the unfolding. Cutoff event ec in Figure 7 is not healthy
as Cut(⌈ec⌉) ∖ ec● = {c′x}, while Cut(⌈ev⌉) ∖ ev● = ∅,
where ev is the corresponding event. The only cutoff
event e′z in Figure 10 is healthy, this results in the proper
prefix where all the concurrency introduced by event
ew is synchronized in the same branch of the prefix by
event e′z.

ea

eb

ct,a
et,a

i

ct,b
et,b

ca,u

cb,v

eu

ev

cw

cx

c'w

c'x

ew,c

ex,d

ec

ed

cw,c

cx,d

cc,y

cd,y

ey o

FIGURE 11. Proper complete prefix unfolding

A proper complete prefix unfolding of an acyclic
system is clearly finite. For structuring purposes, when
computing proper prefixes, we use an adequate order for
safe systems proposed in [50]. This adequate order is
a total order and results in minimal complete prefix
unfoldings, if one only considers information about
reachable markings induced by local configurations,
which is the case for healthy cutoff events. Thus, the
adequate order from [50] always yields minimal proper
prefixes of safe acyclic systems, which applies to our
case; recall that sound free-choice WF-nets are safe.

5.2. From unfoldings to graphs

The proper complete prefix unfolding of a process
component R contains all ordering relations of all
children of R. For structuring, R is to be refined
into a subtree along these ordering relations. The
refinement requires this information to be preserved in a
hierarchically decomposable form: an ordering relations
graph.

Definition 5.2 (Ordering relations graph). Let
β = (N ′, ν), N ′ = (B,E,G), be the proper prefix of
a sound acyclic free-choice WF-system S = (N,Mi),
N = (P,T,F,T , λ). Let x, y ∈ B ∪E be nodes of N ′.

○ x and y are in proper causal relation, written
x ↣N ′ y, iff (x, y) ∈ G+ or there exists a sequence
(e1, . . . , en) of healthy cutoff events of β, ei ∈
E, 1 ≤ i ≤ n, n ∈ N, such that (x, e1) ∈
G∗, (corr(ei), ei+1) ∈ G∗ for 1 ≤ i < n, and
(corr(en), y) ∈ G+. y and x are in inverse proper
causal relation, written y ↢N ′ x, iff x↣N ′ y.

○ Let RN ′ = {↝N ′ ,↜N ′ ,#N ′ , ∣∣N ′} be the ordering
relations of N ′. The proper conflict relation of N ′

is ⊞N ′ = #N ′ ∖ (↣N ′ ∪ ↢N ′). The set R′
N ′ = {↣N ′

,↢N ′ ,⊞N ′ , ∣∣N ′} forms the proper ordering relations
of N ′.

○ We refer to (proper) orderign relations R as
observable, iff the relations in R only contain pairs
of events that correspond to observable transitions.

○ Let R′
N ′ = {↣N ′ ,↢N ′ ,⊞N ′ , ∣∣N ′} be the observable

proper ordering relations of N ′. An ordering
relations graph G = (V,A,B, σ) of N ′ has vertices
V ⊆ E defined by events of β that correspond to
observable transitions of N , arcs A = ↣N ′ ∪ ⊞N ′ ,
and a labeling function σ ∶ V → B, B = T ∖{τ} with
σ(v) = λ(ν(v)), v ∈ V .

Again, in the following we omit subscripts of ordering
relations where the context is clear. An ordering
relations graph of a proper complete prefix unfolding
captures minimal and complete information about the
ordering relations of events that correspond to observable
transitions of the originative system. Figure 12(a)
visualizes the ordering relations graph of the proper
complete prefix unfolding in Figure 10.

d

a

b d'

e

c e'

(a)

a

b

c

d

(b)

FIGURE 12. Ordering relations graphs: (a) of the proper
prefix in Figure 10, (b) of the proper prefix in Figure 11

In the figure, vertices represent events of the proper
prefix, e.g., vertex a represents event ea. Due to a
design decision, arcs of an ordering relations graph
encode proper causal and proper conflict relations. The
graph denotes that a and d are in proper causal relation
(single-headed arrow from a to d), b and d are in proper
conflict (two-headed arrow between a and b), whereas
d and e are concurrent (no arrow). The proper causal
relation updates the causal relation of the proper prefix
to overcome the effect of unfolding truncation. As an
outcome, eb ↣ ec and eb ↣ ed in the proper prefix in
Figure 11, which is also reflected in the ordering relations
graph in Figure 12(b).



Maximal Structuring of Acyclic Process Models 11

5.3. From graphs to process models

The ordering relations graph not only encodes the
ordering relations, it also inherits all information
about well-structuredness from the proper prefix as
pairing of gateways is preserved. The structuring
technique in [6] proceeds by parsing the graph into a
hierarchy of subgraphs that encode ordering relations of
well-structured components. The thereby discovered
hierarchy of subgraphs is then used to refine the
originative rigid component into a subtree. As shown
in [6], each subgraph corresponds to the notion of a
module of the modular decomposition of a directed
graph [54] – thus discovering well-structuredness in the
relations of an unstructured process component.

Let G = (V,A,B, σ) be an ordering relations graph. A
module M ⊆ V in G is a non-empty subset of vertices of
G that are in uniform relation with vertices V ∖M : if
v ∈ V ∖M , then v has directed edges to all members of M
or to none of them, and all members of M have directed
edges to v or none of them do. However, two vertices
v1, v2 ∈ V ∖M , v1 ≠ v2, can have different relations
to members of M . Moreover, the members of M and
V ∖M can have arbitrary relations to each other [54].
For example, {d, e} is a module in Figure 12(a), as both
d and e are in the inverse proper causal relation with
a, and in proper conflict with every other vertex of the
graph.

Two modules M1 and M2 of G overlap, iff they
intersect and neither is a subset of the other, i.e.,
M1 ∖M2, M1 ∩M2, and M2 ∖M1 are all non-empty.
Module M1 is strong, iff there exists no module M2 of
G, such that M1 and M2 overlap.

Definition 5.3 (The modular decomposition tree).
The modular decomposition tree (MDT) of an ordering
relations graph is the set of all its strong modules.

The modular decomposition substitutes each strong
module of G by a new vertex and proceeds recursively.
The result is the MDT which is a unique canonical rooted
tree. The MDT of a directed graph can be computed in
linear time [54].

Now, a rigid process component R of an RPST can be
structured by refining R in the RPST to a subtree TR.
The root of TR is child of R’s parent, each child of R
is attached to a leaf of TR, the nodes of TR are defined
by the modules of the MDT of R’s ordering relations
graph. The class of a node of TR is determined by
the characteristics of its defining MDT module. Every
module of the MDT belongs to one out of four structural
classes.

Definition 5.4 (Module classes).
Let M be a module of an ordering relations graph G.
○ M is a trivial module, iff M is singleton.
○ M is a linear module, iff there exists a linear order

(x1, . . . , x∣M ∣) of elements of M , such that there is
a directed edge from xi to xj in G, iff i < j.

○ M is a complete module, iff the subgraph of G

induced by vertices in M is either complete or
edgeless. If the subgraph is complete, then we refer
to M as xor complete. If the subgraph is edgeless,
then we refer to M as and complete.

○ M is a primitive module, iff M is neither trivial,
nor complete, nor linear. A primitive module is
concurrent, iff it contains a pair of vertices not
connected by an edge in G.

d

a

b d'

e

c e'

C1

L1

L2

C2

C3

L3

(a)

C1

L1 L2

C2 C3

L3

(b)

FIGURE 13. Two different visualizations of the MDT of
the ordering relations graph in Figure 12(a)

Figure 13(a) shows the MDT of the ordering relations
graph in Figure 12(a). Besides the trivial modules,
the MDT contains linear modules L1, L2, and L3,
xor complete module C1, and and complete modules
C2 and C3. Module C1 is the root module, whereas
trivial modules are leafs of the MDT. In the figure,
each area enclosed by a dotted line defines a module
composed of the modules inside the area. Edges
between modules represent relations between every pair
of vertices composed of one vertex from each of the
adjacent modules. Module names hint at their class,
e.g., C1 is complete and L1 is linear. Figure 13(b)
shows an alternative visualization of the MDT given as
a tree-like structure, where nodes represent non-trivial
modules and edges encode containment relation.

An acyclic process model has an equivalent well-
structured model, if its ordering relations graph contains
no concurrent primitive module. According to [6],
the behavior captured by other module classes can
be expressed by well-structured process components.
A trivial module corresponds to a task. A linear
module corresponds to a polygon component. An
and (xor) complete module corresponds to a bond
with and (xor) gateways as entry and exit nodes.
Finally, a primitive module without concurrency can
be structured using standard compiler techniques [34].
A well-structured process model constructed in such
a way is fully concurrent bisimilar with the original
unstructured model.

Given all of the above, Algorithm 1 summarizes the
structuring technique. Algorithm 1 traverses the MDT of
an ordering relations graph of a rigid process component
P and constructs for each encountered module a process
component from components that correspond to its child



12 A. Polyvyanyy et al.

Algorithm 1: Structuring Acyclic Process
Model
Input: An acyclic process model P
Output: An equivalent structured process model

1 Construct WF-net N that corresponds to P
2 Construct proper complete prefix unfolding β of

N
3 Construct ordering relations graph G of β
4 Compute M – the MDT of G
// Construct process model P ′ by

traversing M in postorder

5 foreach module m of M do
6 switch class of m do
7 case m is trivial do
8 Construct a task
9 case m is and complete do

10 Construct an and bond
11 case m is xor complete do
12 Construct a xor bond
13 case m is linear do
14 Construct a trivial or polygon
15 case m is non-concurrent primitive do
16 Construct a structured component

using compiler techniques, e.g., [34]
17 otherwise do
18 FAIL

19 return P ′

modules. The resulting hierarchy of components is the
subtree that refines the rigid component P . In our
example, the RPST of the process model in Figure 1(a)
contains one rigid R1, see also Figure 8(a). R1 can be
refined by a subtree of RPST nodes that correspond
to modules of the MDT in Figure 13(b) to result in
the RPST shown in Figure 8(b). First, modules C2
and L3 can be used to construct components B2 and
P4 in Figure 1(b). Next, modules L1 and C3 must be
employed to construct components P2 and B3. Then,
module L2 results in component P3. Finally, module
C1 results in component B1.

6. MAXIMALLY-STRUCTURED MODELS

In this section, we give a formal definition of
the maximally-structured property of process models.
Unlike well-structuredness, maximal structuredness is
founded on a relation between the RPST and the MDT
of the model. We gain insights into this relation by
applying the structuring technique from Section 5 on
the process model of Figure 2(a). To simplify language,
in the following, we often skip several phases of the
structuring technique when referring to the concepts of
interest. For example, the “MDT of a process model”
is the MDT obtained by mapping the model to a WF-
net, constructing the proper prefix, then its ordering
relations graph and, finally, computing the MDT of the

ec

cr,c cc,v

e'v

ed

ee

et,d ct,d

ct

et,e ct,e

cd,w

ce,x
ex

c'y
e'y,z c'y,z e'z

o'

c'u c'u,v

e'f

c'v,f c'f,ze'u,v

i

en,a

en,b

ea

cn,a

eb

cn,b

ep

eq

ca,p

cb,q cr

cs
es,t

er,c

c'r

c's
ev

ew

cy
ey,z cy,z

ez o

cu cu,v

ef

cv,f cf,zeu,v

eg

cw,g

a b

c

d

e

g

f'

f

c d

eg

f' f

P2a

b

C1

L1

a
i

b

o
B1

R2
P3

c d

eg

f' f

Construct ordering 

relations graph

(line 3)

Compute the MDT 

(line 4)

Construct structured 

process model

(lines 5-18)

P4

FIGURE 14. Structuring the process model in Figure 2(a)

graph.
Figure 14 visualizes transformation steps 3–18 of

Algorithm 1 applied on the process model of Figure 2(a).
The proper prefix of the model (shown at the top of
the figure) is the result of line 2 of the algorithm. Next
(follow the arrow directions), the algorithm constructs
the ordering relations graph and its MDT (lines 3–
4). Finally, the algorithm attempts to construct a
process model from the MDT (lines 5–18). As the
MDT contains primitive module P2, the algorithm
fails at line 18. However, the MDT exhibits some
information on structuredness of the ordering relations:
it contains linear module L1 and xor complete module
C1. These modules can be used to construct structured
components P4 and B1 shown at the bottom of
Figure 14. If one is able to synthesize a process
component which demonstrates the ordering relations
captured in primitive module P2, then one can construct
a model which exhibits more structuredness than the
original one. Note that in general a primitive module
defines a subgraph of the ordering relations graph
and, hence, the topology of the corresponding process
component in the RPST cannot be deduced from the
original model.

In a maximally-structured model every module of
its MDT must have a corresponding component in its
RPST.

Definition 6.1 (Maximally-structured model).
A process model is maximally-structured, iff there exists
isomorphism between the RPST and the MDT of the



Maximal Structuring of Acyclic Process Models 13

process model, where simple components of the RPST
and trivial modules of the MDT are ignored, which
assigns to every polygon component a linear module, to
every bond a complete, to every rigid a primitive, and
all primitives in the MDT are concurrent.

Recall that a simple component is either a trivial process
component, or a polygon composed of two trivials
(Section 4). Due to the properness of the complete
prefix unfolding, the ordering relations graph of a
given process model and, hence, its MDT are unique.
Consequently, each process model has exactly one unique
fully concurrent bisimilar maximally-structured version.

Figures 15(a) and 15(c) show the RPST of the model
in Figure 2(a) and the subtree of the RPST of the model
at the bottom of Figure 14, respectively, without simple
components. In Figure 15(b), one can see the MDT from
the structuring scenario in Figure 14, without trivial
modules. This MDT is isomorphic to the RPST in
Figure 15(c): Linear L1 can be mapped to polygon P4.
Complete C1 can be mapped to bond B1; primitive
P2 can be mapped to rigid R2. In the final RPST
of the maximally-structured version of Figure 2(a),
polygon P4 must be merged with polygon P3 (as P4 is
a subsequence of P3 and thus not canonical), see [51]
for details. Note that Definition 6.1 is based on the
implicit assumption that the isomorphism between both
trees canonically extends to an isomorphism that maps
process components with tasks onto modules of events
with the same multisets of names/labels.

P1

R1

(a)

L1

C1 P2

(b)

P4

B1 R2

(c)

FIGURE 15. (a) The RPST of the model in Figure 2(a),
(b) the MDT and (c) the subtree of the RPST from the
structuring scenario in Figure 14, all simplified

In the next section, we explain a technique for
maximal structuring of process models, which essentially
boils down to the technique for synthesis of a process
component from a given ordering relations graph.

7. MAXIMAL STRUCTURING

The open problem from Section 5 is to structure
a given rigid process component into an equivalent
maximally-structured process component R. In the
light of Section 6, R has this property, iff (i) all
primitive modules in the MDT of R’s ordering relations
graph are concurrent, and (ii) there exists a bijection
between non-singleton modules of the MDT and non-
simple components of the RPST which assigns to each
primitive module a rigid component, to each complete
a bond, and to each linear a polygon. The maximal
structuredness of R follows from the maximality of the

modular decomposition: the ordering relations graph
of R inherits all information about well-structuredness
from the proper prefix of R, and the MDT maximizes
modules with a well-structured representation because of
the decomposition into strong modules. If a concurrent
primitive module M has well-structured child modules,
then these modules are maximal again within M . Only
the relations within M have no structured representation
as process model. That is, M is minimized by
maximizing structuredness around and inside M . This
yields a technique for maximal structuring: one must be
able to synthesize a process component that exhibits the
ordering relations described in M . Such a technique
would allow to define unstructured process model
topologies by mapping hierarchies of modules onto
hierarchies of process components in Algorithm 1, e.g.,
the primitive module in Figure 14 onto the rigid
component in Figure 2(b). The resulting process model
would be maximally-structured.

In this section, we propose a solution to the synthesis
problem, i.e., given an ordering relations graph (a
module of an MDT) we synthesize a process model (a
component of the RPST) that realizes the relations
described in the graph. The central idea is to
first construct from the ordering relations graph an
occurrence net that is interpreted as the unfolding of
the process model and that exhibits the same ordering
relations. Refolding this unfolding then yields the
process model we wish to synthesize. The entire
procedure requires several phases that employ results
of domain- and net theory [49], and on folding prefixes
of systems [55]. The procedure extends the structuring
approach of Figure 9 and is shown in Figure 16. The
reconstruction of the occurrence net is explained in detail
in Sections 7.1–7.3, and the refolding to a process model
in Sections 7.4–7.6.

7.1. From graphs to partial orders

This section describes a translation from an ordering
relations graph to a partial order of information. The
partial order is an alternative formalization of the
behavior captured in the graph. The elements of the
partial order essentially correspond to the configurations
of a branching process (Definition 3.11).

The ordering relations graph in Figure 17 is a module
from the running example of Section 6. The graph is a
primitive module with all types of relations; f and f ′

represent events with the same label.
First, we give some definitions from the theory of

partially ordered sets (posets) [49]. Let (D,⊑) be a
poset. For a subset X of D, an element y ∈ D is an
upper (lower) bound of X, iff x ⊑ y (x ⊒ y), for each
element x ∈ X. An element y ∈ D is a greatest (least)
element, iff for each element x ∈ D holds x ⊑ y (x ⊒ y).
An element y ∈ D is a maximal (minimal) element, iff
there exist no element x ∈ D, such that y ⊏ x (x ⊏ y);
Dmax and Dmin denote the sets of maximal and minimal



14 A. Polyvyanyy et al.

Prime 

algebraic 

coherent 

posets

Event 

structures

Occurrence 

nets
Nets

Maximally-

structured 

process 

models

WF-systems
Process 

models

Proper 

complete 

prefix 

unfoldings

Ordering 

relations 

graphs

FIGURE 16. An extension of the structuring chain of Figure 9

c d

eg

f' f

FIGURE 17. Ordering relations graph

elements of D. Two elements x and y in D are consistent,
written x ↑ y, iff they have a joint upper bound, i.e.,
x ↑ y ⇔ ∃ z ∈ D ∶ x ⊑ z ∧ y ⊑ z; otherwise they are
inconsistent. A subset X of D is pairwise consistent,
written X⇑, iff every two elements in X are consistent
in D, i.e., X⇑ ⇔ ∀x, y ∈ X ∶ x ↑ y. The poset (D,⊑)
is coherent, iff each pairwise consistent subset X of D
has a least upper bound (lub) ⊔X. An element x ∈ D
is a complete prime, iff for each subset X of D, which
has a lub ⊔X, holds that x ⊑ ⊔X ⇒ ∃ y ∈ X ∶ x ⊑ y.
Let P = (D,⊑) be a poset. We write PP for the set
of complete primes of P . The poset P = (D,⊑) is
prime algebraic, iff PP is denumerable and every element
in D is the lub of the complete primes it dominates,
i.e., ∀ x ∈ D ∶ x = ⊔{y ∣ y ∈ PP ∧ y ⊑ x}. A set
S is denumerable, iff it is empty or there exists an
enumeration of S that is a surjective mapping from
the set of positive integers onto S. Figure 18 shows
two prime-algebraic posets; their elements are sets (of
events) ordered by set inclusion. The complete primes
are written in bold typeface.

Ø

{d} {c} {e}

{d,g} {c,e}{c,d}

{c,d,g} {c,d,f} {c,e,f' }

{c,d,f,g}

(a)

Ø

{i,d} {i,c} {i,e}

{i,d,g} {i,c,e}{i,c,d}

{i,c,d,g} {i,c,d,f} {i,c,e,f' }

{i,c,d,f,g}

{i}

{i,c,e,f',o}

{i,c,d,f,g,o}

(b)

FIGURE 18. (a) Poset, and (b) augmented poset obtained
from the graph in Figure 17

The behavior captured in an ordering relations graph
can be translated to a prime algebraic partial order.
Similar to [49], the elements of the partial order are

the left-closed and conflict-free subsets of vertices of the
graph. In our case the graph’s vertices represent events
and each such set of events describes the history of
events of some run of a system. Let G = (V,A,B, σ) be a
graph and let W be a subset of V . W is conflict-free, iff
∀ v1, v2 ∈W ∶ (v1, v2) ∉ A∨ (v2, v1) ∉ A. W is left-closed,
iff ∀ v1 ∈ W ∀ v2 ∈ V ∶ (v2, v1) ∈ A ∧ (v1, v2) ∉ A ⇒
v2 ∈ W . We define L[G] = (H,⊆) as the partial order
of left-closed and conflict-free subsets H of V , ordered
by inclusion ⊆. Figure 18(a) shows the poset L of the
graph in Figure 17. Theorem 7.1, inspired by Theorem 8
in [49], characterizes the posets L[G].

Theorem 7.1. Let G = (V,A,B, σ) be an ordering
relations graph, let B = {a ∈ A ∣ a−1 ∉ A}. Then,
L[G] = (H,⊆) is a prime algebraic coherent partial
order. Its complete primes are those elements of the
form [v] = {v′ ∈ V ∣ (v′, v) ∈ B∗}.

Proof. Let X ⊆ H be pairwise consistent. Then, ∪X
is conflict-free. ⊔X = ∪X and, hence, L[G] is coherent.
Each [v], v ∈ V , is clearly left-closed and conflict-free.
Let X ⊆ H have lub ⊔X. X is pairwise consistent
and ⊔X = ∪X. Each [v] is a complete prime. If
[v] ⊆ ∪X, then v ∈ ∪X and for some x ∈ X holds
v ∈ x and, thus, [v] ⊆ x. It holds for each X ∈ H
that X = ∪{[v] ∣ v ∈ ∪X}. Thus, each element of L[G]
is a lub of the complete primes below it.

Given an ordering relations graph, one can construct
L[G] = (H,⊆) iteratively. Let h1 and h2 be subsets of V ,
such that h2 ∖ h1 = {v}. Then h1, h2 ∈ H, iff h1 = ∅ or
∃ a ∈ h1 ∶ (v, a) ∉ A, and ∀ b ∈ h1 ∶ (b, v) ∉ A ∨ (v, b) ∉ A,
and ∀ c ∈ V ∖ h1, (c, v) ∈ A, (v, c) ∉ A ∃ d ∈ h1 ∶
(c, d), (d, c) ∈ A.

Finally, we augment L[G] = (H,⊆) with two fresh
events i, o ∉ V to ensure the existence of a single
source i and single sink o in the synthesis result. An
augmented partial order of G is L∗[G] = (H∗,⊆), where
H∗ = {∅} ∪ {h ∪ {i} ∣ h ∈ H} ∪ {h ∪ {i, o} ∣ h ∈ Hmax}.
Figure 18(b) shows L∗ of the graph in Figure 17. Adding
new minimal and maximal elements i and o leaves the
topology of the posets unchanged, so L∗[G] is a prime
algebraic coherent poset.

7.2. From partial orders to event structures

The step from an ordering relations graph G
to its augmented poset L∗[G] basically describes
configurations of an unfolding that has the same ordering
relations as G. The complete primes of L∗[G] play a
special role: they identify single events. Synthesizing
the unfolding itself requires to define these events and



Maximal Structuring of Acyclic Process Models 15

{i,c}

{i,d}
{i,e}{i,d,g}

{i,c,d,f}{i,c,e,f' }

d

f

i
{i}

o o

{i,c,e,f',o}{i,c,d,f,g,o}

c

eg

f

(a)

a b

i

c d

{i}

{i,a} {i,b}

{i,a,c} {i,a,d}

c d

{i,b,c} {i,b,d}

o o

{i,a,c,d,o} {i,b,c,d,o}

(b)

FIGURE 19. Event structures obtained from (a)
Figure 18(b), and (b) the augmented poset of the graph
in Figure 12(b)

their conflict relation explicitly. We do so by the help
of the well-studied concept of an event structure [49].

Definition 7.1 (Labeled event structure).
An event structure is a triple E = (E,≤,⊕), where E is
a set of events, ≤ is a partial order over E called the
causality relation, and ⊕ is a symmetric and irreflexive
relation in E, called the conflict relation that satisfies
the principle of conflict heredity, i.e., ∀e1, e2, e3 ∈ E ∶
e1 ⊕ e2 ∧ e2 ≤ e3 ⇒ e1 ⊕ e3. A labeled event structure
E = (E,≤,⊕,C, κ) additionally has a set C of labels, τ ∈ C,
and κ ∶ E → C assigns to each event a label.

An ordering relations graph G differs from an event
structure E in that G allows violations of conflict heredity.
These violations, however, are not harmful; they express
equivalent runs of a system. These equivalent runs are
visible in the posets of Sect. 7.1 and become explicit in
event structures. Each prime algebraic coherent poset
L∗[G] = (H,⊆) of an ordering relations graph G induces
an event structure E[L∗[G]]: each complete prime
becomes an event, the ordering relation ⊆ induces the
partial order ≤ over events, conflicts arise between events
that have no joint least upper bound in L∗[G]. The
resulting event structure can intuitively be understood
as an unfolding of the ordering relations graph that
adheres to conflict heredity. The formal definition is an
extension of Def. 18 in [49]; it incorporates propagation
of labels of an originative ordering relations graph to
the corresponding event structure.

Definition 7.2 (Event structure of partial order).
Let G = (V,A,B, σ) be an ordering relations graph
and let P = (H,⊆) be an (augmented) prime algebraic
coherent partial order of G. Then, E[P ] is defined as the
labeled event structure (E,≤,⊕,C, κ), where E =PP , ≤
is ⊆ restricted to PP , for all e1, e2 ∈ PP ∶ e1 ⊕ e2, iff e1
and e2 are inconsistent in P , and C = B ∪ {τ}. Let e ∈ E,
and define ê as ê ∈ e ∖⋃a⊂e,a∈H a. Then, κ(e) = σ(ê), if
ê ∈ V ; otherwise κ(e) = τ , for all e ∈ E.

Figure 19(a) visualizes E[L∗[G]] for the graph G of
Figure 17. Events are complete primes of L∗[G]
(see in boldface in Figure 18 and next to vertices in
Figure 19). Directed edges encode causality (transitive

dependencies are not shown), dotted edges represent
implicit concurrency, whereas an absence of an edge
hints at a conflict relation. The particular example of
the event structure in Figure 19(a) is structurally similar
to the graph in Figure 17; they differ only in Figure 19(a)
having additional fresh i, o events. In general, event
structures tend to have a different structure compared
to the originative graphs. For instance, Figure 19(b)
shows the event structure derived from the augmented
poset of the graph in Figure 12(b).

7.3. From event structures to occurrence nets

The event structure E = E[L∗[G]] explicitly describes
events of an unfolding that has the same ordering
relations as the originative ordering relations graph G.
We obtain the unfolding by enriching E with conditions,
that is, we translate E to an occurrence net. Nielsen
et al. in [49] show a tight connection between event
structures and occurrence nets. Let N = (B,E,G) be
an occurrence net. Then, ξ[N] = (E,G∗ ∩E2,#N ∩E2)
is a corresponding event structure. The next theorem,
borrowed from [49], defines the converse: how to
construct an occurrence net from a given event structure.

Theorem 7.2. Let E = (E,≤,⊕), E ≠ ∅, be an event
structure. Then, there exists an occurrence net η[E],
such that E = ξ[η[E]].
Proof. Define the set CE = {x ⊆ E ∣ ∀e1, e2 ∈ x ∶
e1 ≠ e2 ⇒ e1 # e2}. The events of η[E] are exactly
those in E. The set of conditions is defined by B =
{⟨e, x⟩ ∣ e ∈ E,x ∈ CE , and ∀e′ ∈ x ∶ e ≤ e′}∪{⟨0, x⟩ ∣ x ∈
CE , and x ≠ ∅}. The flow relation is defined by G =
{(⟨e, x⟩ , e′) ∣ ⟨e, x⟩ ∈ B, e′ ∈ x} ∪ {(⟨0, x⟩ , e′) ∣ ⟨0, x⟩ ∈
B, e′ ∈ x} ∪ {(e, ⟨e, x⟩) ∣ ⟨e, x⟩ ∈ B}. It follows, that
η[E] = (B,E,G) is an occurrence net for which # = ⊕,
and hence ξ[η[E]] = E .

In the following we consider labeled event structures
and correspondingly labeled occurrence nets to describe
system behavior where a transition may occur in several
contexts, e.g., after a join. A labeled occurrence net
generalizes the notion of a branching process of a
(labeled) net system (Definition 3.9) as it describes
system behavior when the system is not known – which
is the case here, as we want to synthesize one.

A labeled occurrence net N = (B,E,G,T , λ) is an
occurrence net (B,E,G) (Definition 3.8) where λ ∶ B ∪
E → T , τ ∈ T , assigns each node x ∈ B ∪E a label λ(x).
Every branching process β = (N,ν), N = (B,E,G) of a
labeled net system S = (NS ,M0), NS = (P,T,F,T , λ)
induces the labeled occurrence net (B,E,G,T , ν ○ λ)
that describes the ordering of occurrences of labels T
instead of occurrences of transitions of S.

Theorem 7.2 canonically lifts to labeled event
structures and labeled occurrence nets: each labeled
event structure E = (E,≤,⊕,C, κ) induces the labeled
occurrence net η[E] = (B,E,G,C ∪ {τ}, κ′) which



16 A. Polyvyanyy et al.

�

� �

�

�

��

� �

FIGURE 20. Occurrence net obtained from Figure 19(a) by Theorem 7.2 (without redundant conditions)

preserves the labels of events and assigns each condition
label τ , i.e., for all e ∈ E,κ′(e) = κ(e), and for all
b ∈ B,κ′(b) = τ .

Figure 20 shows the labeled occurrence net which
is constructed from the event structure shown in
Figure 19(a) using the principles of Theorem 7.2.
Theorem 7.2 defines a “maximal” construction, see [49],
i.e., the resulting nets tend to contain much redundancy.
With Def. 7.3 we aim at preserving only essential
behavioral dependencies.

Definition 7.3 (Conditions).
Let N = (B,E,G,T , λ) be a labeled occurrence net.

○ A condition b ∈ B is redundant, iff b● = ∅ ∧ ∃ b′ ∈
B, b ≠ b′ ∶ b′ ∈ (●b)● or ●b = ∅∧ ∃ b′ ∈ B, b ≠ b′ ∶ (b● =
b′●) ∧ (●b′ ≠ ∅).

○ A condition b ∈ B is subsumed by condition b′ ∈ B,
b ≠ b′, iff ●b = ●b′ ∧ b● ⊆ b′●.

○ A condition b ∈ B denotes a transitive conflict
between events e1, e2 ∈ E, iff λ(e1) ≠ λ(e2) and
there exists condition b′ ∈ B, b ≠ b′, and events
f1, f2 ∈ b′●, (f1 ↝N e1) ∧ (f2 ↝N e2 ∨ f2 = e2).

○ Any other condition is required.

A redundant condition has no pre-event (post-event),
and is not a pre-condition (post-condition) of the initial
(a final) event. A subsumed condition b always has a
sibling b′ expressing the same constraints for larger set
of events. A condition b denotes a transitive conflict
between two events, if an “earlier” condition b′ already
denotes this conflict. Subsumed conditions are shaded
light-grey in Figure 20 and transitive conflicts dark-grey.
All these conditions can be removed from the occurrence
net without loosing information about ordering of events.

An exception to transitive conflicts is a condition b
shared by two post-events e1, e2 with the same label.
Here, b not only expresses conflict, but also the only
direct causal dependency of e1 and e2 on the pre-event
of b; such a condition is required (Definition 7.3).

For synthesizing a Petri net from the occurrence net
obtained from an ordering relations graph, we remove
from the occurrence net first all redundant conditions,
then all subsumed conditions, and finally all transitive
conflicts. Removing these conditions from the net in
Figure 20 yields the net in Figure 23. Note that all
conditions are labeled τ . Condition b9 highlights the

exception to transitive conflicts: it is the only condition
expressing that f depends on c and, hence, must be
part of the occurrence net. Also the resulting net still
contains a number of implicit conditions, i.e., conditions
which could be removed from the net without changing
the ordering relations such as b11 denoting e2 ↝ e8 which
is also expressed by the path e2, b8, e6, b15, e8. We shall
see that these remaining implicit conditions are vital for
synthesizing a Petri net from a given occurrence net.

7.4. From occurrence nets to nets
(the basic idea)

The occurrence net obtained by Theorem 7.2 and after
removing redundant, subsumed, and transitive conflict
conditions (Definition 7.3) is already a process model –
though one with duplicate structures and multiple sinks.
We obtain a more compact model with a single sink by
folding the occurrence net.

b1
i

d

e

c

f

f

g

o

o

b2

b4

b7

b8

b9

b14

b15

b16

b17

b18

e1

e2

e3

e4

e5

e6

e7

e8

e9

b10

b11

h
b13

e12

FIGURE 21. Occurrence net without implicit conditions.

We first illustrate the idea on a simple, special case
and then present the general approach. Consider the
occurrence net N in Figure 21 which contains no implicit
conditions. Intuitively, we obtain a process model from
N by folding any two nodes of N which have isomorphic
successors into one node. This operation preserves all
ordering relations and all behavior represented in N .
The corresponding formal notion is an equivalence on
the nodes of the occurrence net, called future equivalence,
which is characterized co-inductively:

Two nodes of an occurrence net are future
equivalent only if they have the same label and
their post-sets are future equivalent.



Maximal Structuring of Acyclic Process Models 17

The equivalence classes of the future equivalence define
the nodes of the folded net: for each equivalence class,
fold all its nodes into one node, preserving the arcs. The
branching process of the folded net is exactly the original
occurrence net, see [55, Theorem 8.7].

For the occurrence net N in Figure 21 consider the
future equivalence ∼f with the classes {b17, b18}, {e8, e9},
{b15, b16}, {b13, b14}, {e6, e7}, {b8, b10}, and all other
nodes remaining singleton. Folding N under ∼f yields
the net in Figure 22 which has N as its branching
process.

Each occurrence net has several future equivalences
differing in how pre-conditions of events are folded.
The algorithm for constructing a future equivalence is
described next.

7.5. From occurrence nets to nets
(the general case)

The general case of folding an occurrence net to a process
model has one additional twist: the process model to be
synthesized from the original ordering relations graph
may have unobservable control flows between gateways
without a task, e.g., the flow from x to y in Figure 2 is
unobservable. Such flows can only be synthesized when
the occurrence net to fold contains implicit conditions.
The occurrence net obtained from Theorem 7.2 and
reduced to its required conditions contains all implicit
conditions having exactly one pre- and one post-event.
These implicit conditions are an overapproximation of
the unobservable control flow in the process model. Our
folding procedure identifies during folding all implicit
conditions that explain required unobservable control
flow, and discards all others. Technically, we fold an
occurrence net by first identifying a folding equivalence
and then folding all nodes of an equivalence class into the
same node of the process model. The folding equivalence
has two properties: (1) it is a future equivalence,
so that equivalent events of an occurrence net have
equivalent successor events, and (2) pre-conditions and
post-conditions of equivalent events have to be mutually
equivalent. We first formalizing these notions, and
then describe the procedure that finds such a folding
equivalence for a given occurrence net.

Definition 7.4 (Future equivalence).

b1
i

d

e

c

f

g o
b2

b4

b7

b7

e1

e2

e3

e4

e5

e6,e7 b15,b16
b8,b10

b13,b14

e8,e9

b17,b18

h
b11

e12

FIGURE 22. Folded net obtained from Figure 21

Let N = (B,E,G,T , λ) be a labeled occurrence net.
An event e ∈ E is direct successor of an event e′ ∈ E,
written e ∈ dSucc(e′), iff e′ ↝N e and for no e′′ holds
e′ ↝N e′′ ↝N e.
An equivalence relation ∼ ⊆ (B ×B)∪ (E ×E) is a future
equivalence on N , iff the following properties hold:
○ For all x, y ∈ B ∪E holds, x ∼ y implies λ(x) = λ(y)

and ¬(x ∣∣N y).
○ For all e, f ∈ E with e ∼ f holds: for each
e′ ∈ dSucc(e) with λ(e) = a exists f ′ ∈ dSucc(f)
with λ(f) = a and e′ ∼ f ′, and vice versa.

The future equivalence captures the essence of our
behavioral equivalence criterion for structuring, fully
concurrent bisimulation [6, Def. 12], in a stronger
form that suits folding. Every future equivalence
on an occurrence net N yields a fully concurrent
bisimulation relation on the partially ordered runs
described by N .5 The converse does not hold as a
future equivalence also considers invisible events of N .
Merging future equivalent events of N into the same
transition preserves the ordering relations encoded in
N , see [55, Theorem 8.7] for the formal proof.

Folding an occurrence net N also requires to correctly
fold pre- and post-conditions of events while treating
implicit conditions in the right way. Thereby, the
event with the largest number of non-implicit pre-
conditions in an equivalence class determines the number
of predecessors for the entire class; all other events in
the class “fill up” their pre-set with implicit conditions;
correspondingly for post-sets. To formalize this, we need
to introduce some notions.

For an occurrence net N = (B,E,G,T , λ), let
implicitN ⊆ B be the set of implicit conditions of N ,
i.e., b ∈ implicitN iff {e1} = ●b, b● = {e2} and there is a
path from e1 to e2 in N without b.

Let ∼ ⊆ (B ×B) ∪ (E ×E) be an equivalence relation.
For an equivalence class ⟨x⟩ of ∼, let maxpre(⟨x⟩) be
the largest number of non-implicit predecessors of all
members of ⟨x⟩, i.e., maxpre(⟨x⟩) = ∣●x′∣, x′ ∈ ⟨x⟩ s.t. for
all x′′ ∈ ⟨x⟩ holds ∣ ● x′ ∖ implicitN ∣ ≥ ∣ ● x′′ ∖ implicitN ∣;
correspondingly let maxpost(⟨x⟩) be the largest number
of non-implicit successors of all members of ⟨x⟩. For
sets X,Y ⊆ B we write X ∼ Y iff X = {x1, . . . , xk}, Y =
{y1, . . . , yk} and xi ∼ yi, for all 1 ≤ i ≤ k.

Definition 7.5 (Folding equivalence).
Let N = (B,E,G,T , λ) be a labeled occurrence net,
∀ b ∈ B ∶ λ(b) = τ . An equivalence relation ∼ ⊆
(B ×B) ∪ (E ×E) preserves the environment of events
iff for each equivalence class ⟨e⟩ of ∼, e ∈ E, and for all
e1, e2 ∈ ⟨e⟩ holds:
○ ∃B1 ⊆ ●e1,B2 ⊆ ●e2 ∶ B1 ∼ B2 ∧ ∀i ∈ {1,2} ∶ ∣Bi∣ =

maxpre(⟨e⟩) ∧ ●ei ∖Bi ⊆ implicitN , and
○ ∃B1 ⊆ e1●,B2 ⊆ e2● ∶ B1 ∼ B2 ∧ ∀i ∈ {1,2} ∶ ∣Bi∣ =

maxpost(⟨e⟩) ∧ ei ● ∖Bi ⊆ implicitN .

5Every prefix π of a labeled occurrence net N that contains no
conflicting events is a partially ordered run [46].



18 A. Polyvyanyy et al.

b1
i

d

e

c

f

f

g

o

o

b2

b3

b4

b7

b8

b9

b12

b14

b15

b16

b17

b18

e1

e2

e3

e4

e5

e6

e7

e8

e9

b6

b5

b10

b11

b13

FIGURE 23. Simplified occurrence net obtained from
Figure 20

An equivalence ∼f ⊆ (B × B) ∪ (E × E) is a folding
equivalence on N iff ∼f is a future equivalence and
preserves the environment of events.

Considering the occurrence net N in Figure 23, the
equivalence ∼f with the classes {b17, b18}, {e8, e9},
{b11, b14}, {b15, b16}, {e6, e7}, {b8, b10}, and all other
nodes remaining singleton, is a folding equivalence on
N . In particular, in the equivalence class {e8, e9} the
pre-set of event e9 defines that all events have to have
2 pre-conditions that are mutually equivalent. Hence,
{b15, b16} and {b11, b14} are equivalence classes of ∼f
where the second class contains the implicit condition
b14. The remaining pre-conditions of {e8, e9} need not
be equivalent.

Without implicit conditions, folding would not succeed
as it can be seen from the occurrence net in Figure 23
where implicit conditions are highlighted grey. The two
equivalent events e8 and e9 differ in the number of non-
implicit pre-conditions. To consistently fold e8 and e9
w.r.t. their pre- and post-sets, the pre-set of e8 has to
be extended with one implicit condition during folding.

We fold an occurrence net to a Petri net by merging all
nodes of a folding equivalence class into the same node
– except for equivalence classes consisting of implicit
conditions only, these are discarded.

Definition 7.6 (Folded net).
Let N = (B,E,G,T , λ) be a labeled occurrence net s.t.
∀ b ∈ B ∶ λ(b) = τ . Let ∼f be a folding equivalence
on N ; write ⟨x⟩f = {y ∣ y ∼f x} for the equivalence
class of x. The folded net of N under ∼f is the net
Nf = (Bf ,Ef ,Gf ,T , λf) where
○ Bf = {⟨b⟩f ∣ b ∈ B, ⟨b⟩f /⊆ implicitN},
○ Ef = {⟨e⟩f ∣ e ∈ E},
○ Gf = {(⟨x⟩f , ⟨y⟩f) ∣ (x, y) ∈ G, ⟨x⟩f , ⟨y⟩f ∈ Bf∪Ef},

and
○ λf(⟨x⟩f) = λ(x).

Folding N of Figure 23 under ∼f given above yields the
net Nf shown in Figure 24. Folding N into Nf preserves

the behavior of N , see [55, Theorem 8.7].

b1
i

d

e

c

f

g

o
b2

b4

b7

b7

e1

e2

e3

e4

e5

e6,e7 b15,b16
b8,b10

b11,b14

e8,e9

b17,b18

FIGURE 24. Folded net obtained from Figure 23

A simple algorithm to compute a folding equivalence
traverses the given finite occurrence net backwards in a
breadth-first manner. The conditions of the occurrence
net without any post-event have equivalent futures.
Correspondingly, their pre-events with the same label
have equivalent futures. Building the folding equivalence
backwards in this way ensures that only future equivalent
events are put into the same equivalence class. Branching
and backtracking are used whenever for a condition b
there are two or more pairwise concurrent conditions
that could be folded with b. Each option is explored
and the most-compact folding is chosen. For instance in
Figure 21 after folding b17 ∼f b18 and e8 ∼f e9, for b15 the
folding options b14 and b16 can be explored; backtracking
yields b16 as the better match for b15 because of their
f -labeled pre-events.

When extending the folding equivalence to pre-
conditions of equivalent events E′, for instance for
E′ = {e8, e9}, implicit conditions are taken into account
as follows:

○ Pick the event e ∈ E′ with the largest set B′ of
non-implicit pre-conditions, e.g., {b14, b16} ⊂ ●e9.

○ For each b ∈ B′, extend the folding equivalence
with a non-implicit or implicit condition b′ ∈ ●e′,
for all other events e′ ∈ E′, preferring non-implicit
conditions over implicit ones, e.g., b16 ∼f b15,
b14 ∼f b11.

○ Finally, remove all non-implicit conditions not
required in this step, e.g., b5, b6, b13.

The second step ensures that pre-sets of equivalent
events are preserved, the third step ensures that
post-sets of equivalent events (that are identified in
subsequent steps) are preserved. Various heuristics
improve exploration and backtracking when matching
pre-conditions of events with each other. When the
future equivalence cannot be extended further, the net
can be folded according to Def. 7.6. Applying this
procedure on our example yields the folded net shown
in Figure 24 without the dashed conditions and arcs.



Maximal Structuring of Acyclic Process Models 19

c

i s

d

e

f

o

t

u

v

w

x

y

z

P1R1

g

FIGURE 25. Process model obtained from Figure 24

7.6. From nets to process models

The folding was the second to last step in synthesizing
a process model from a given ordering relations graph.
We obtained a Petri net Nf which we now transform
into a process model P using the principles of Figure 5
in the reverse direction.

The initial transition i (final transition o) is mapped
to the source (sink) node of P . Every other transition of
Nf becomes a task of P . Gateways of P follow from non-
singleton pre- and postsets of nodes of Nf . A transition
t with two or more pre-places is preceded by an and
join; two or more post-places of t define an and split;
the pre- and postsets of places define xor splits and
joins, respectively; and gateways are always positioned
closer to the task. In our example, e1● defines and split
s in Figure 25, b2● defines xor split u, e3● defines and
split v, ●⟨e6, e7⟩ defines and join t, and ●⟨b6, b8⟩ defines
xor join x positioned between t and v (and gateways
closer to tasks); correspondingly for all other gateways.
The arc from e2 to ⟨b11, b14⟩ which was obtained from a
transitive conflict (Definition 7.3) results in an important
control-flow arc from w to y without any task.

This concludes our technique for maximal structuring.
Returning to our running example, we complete the
maximal structuring of the model of Figure 2(a)
by placing the synthesized process model R1 of
Figure 25 at the corresponding spot in the RPST of
Figure 14(bottom). Recall that this RPST was obtained
from the original process model using Algorithm 1.
Placing R1 at its designated spot yields the maximally-
structured model of P shown in Figure 2(b).

8. EVALUATION

The overall approach has been implemented in a tool,
namely bpstruct, which is publicly available6. Using
bpstruct we conducted an evaluation to assess the
performance of our techniques and to analyze the amount
of duplication introduced during the structuring. All
tests were performed on a laptop with a dual core Intel
processor, 2.53 GHz, 4 GB of memory, running Microsoft
Vista and SUN Java Virtual Machine version 1.6 (with
512 MB of allocated memory). To eliminate load time
from the measures, each test was executed five times,

6http://code.google.com/p/bpstruct

and we recorded the average execution time of the second
to fifth run. In the following, we provide details about
the dataset used for the study and discuss the results of
the experiments.

8.1. Dataset

The study was conducted on a collection of process
models extracted from industrial practice that has been
publicly released for research purposes [56]. More
precisely, we used the set of WF-nets provided in
Woflan [57, 58] file format7. In contrast to the original
collection, where a large number of process models has
multiple start nodes and/or multiple end nodes, the WF-
nets have been completed such that each WF-net has
a single source and a single sink place while preserving
the original behavior. The reader is referred to [56] for
a detailed description of the dataset and the underlying
completion process.

In a first stage we removed all unsound WF-nets
from the collection. Every sound WF-net was parsed
using the RPST decomposition as described in [59].
Every bond and polygon in the RPST was abstracted
to a single transition. For each rigid component
identified in the RPST a process model was synthesized
using the approach described in Section 7.6. Two
nodes were added to mark the entry and exit points,
respectively. This procedure yielded a total of 170 sound
unstructured process models. Among them, 115 are
heterogeneous acyclic rigids (acyclic rigids with xor
and and gateways), 39 are and rigids (acyclic rigids
with and gateways only), 14 are cyclic rigids and 2
are xor rigids (rigids with xor gateways only). For
the purpose of this study, we only kept models with
heterogeneous acylic rigids and and rigids (154 process
models). To ease the analysis, we further classified the
heterogeneous rigids into “structurable” and “maximally
structurable”, accordingly. Table 2 summarizes the
size of the models used for the study. In the table,
and rigids are referred to as inherently unstructured.
The size of the models after structuring is shown in
parenthesis. There were two exceptionally large process
models in the dataset, one “structurable” and the other
one “maximally structurable”. Both models have been
excluded when calculating the average sizes. However,
their sizes correspond to maximum values in their
structural classes in Table 2.

8.2. Results

Our study reveals that out of the 154 process models,
110 models (71.43%) can be structured into well-
structured models. More importantly, there exist models,
in our case 5 (3.25%), which require the extension
proposed in this article to achieve maximal-structuring,
while 39 models (25.32%) are inherently unstructured.
Concerning performance, Figure 26(a) presents the

7http://service-technology.org/soundness



20 A. Polyvyanyy et al.

TABLE 2. Structural information on process models in the dataset

Structurable Maximally structurable Inherently unstructured

Number of models 110 5 39
Avg number of nodes/arcs 21/31 (14/16) 32/51 (40/47) 12/14
Max number of nodes/arcs 119/195 (1178/1346) 124/173 (545/631) 26/32

execution times relative to the number of events in the
proper complete prefix unfolding, including a trend line
for each structural class. It can be easily noted that
the execution time is highly correlated to the size of the
proper prefix. We observed a significant difference in the
processing time for “maximally structurable” models
compared to “structurable” models. Nevertheless,
the average time for structuring was in the order of
milliseconds, with a few exceptions. We found two
exceptionally large cases: one model (“structurable”)
with 119 nodes (the proper prefix had 2429 events) and
the other one (“maximally structurable”) with 124 nodes
(the proper prefix had 913 events), requiring 9 and 1
seconds for structuring, respectively.

Figure 26(b) presents the variation in the size of
models, i.e., number of nodes, after structuring. On
average, the model’s size decreased by about 15%, with a
standard deviation of 0.817. This can be easily confirmed
in the figure, as most of the points are located under the
diagonal (which corresponds to a ratio 1:1), particularly
in the case of “structurable” models. Recall that
models were, in most of the cases, augmented with some
additional elements (i.e., and gateways and transitive
flow relations) to transform them into single exit models.
Therefore, the reduction in size can be explained by
the removal of gateways and transitive flow during
the structuring perfomed by bpstruct. Conversely,
the sizes of and rigids remained the same for this
dataset. In additional internal experiments, we found
that for certain and rigids it is also possible to observe
a reduction on the size of the (maximally-)structured
version when redundant elements are eliminated, e.g.,
spurious flow relations/gateways. The dataset used
in our experiments is publicly available at bpstruct

web site8, including the graphical version of the process
models in PDF file format.

9. CONCLUSION

In [6], we presented for the first time the full
characterization of the class of acyclic process models
that have an equivalent structured version along with
a structuring method. The method stops when the
input model contains an inherently unstructured process
component. This article completes the approach by
providing a method to synthesize the components
corresponding to inherently unstructured parts of the
input model.

Close to our setting, the problem of synthesizing nets
from behavioral specifications has been a line of active
research for about two decades [60, 61]. This area has

8http://code.google.com/p/bpstruct/wiki/MaxStructEvaluation

0

50

100

150

200

250

0 20 40 60 80 100 120 140

Ex
ec

ut
io

n 
tim

e 
(m

s)


Size of Unfolded Net

Struct Inh unstr Max str

(a) Average structuring time

0

20

40

60

80

100

0 20 40 60 80No
de

s 
af

te
r s

tru
ct

ur
in

g

Original number of nodes

Struct Inh unstr Max str

(b) Ratio of duplication

FIGURE 26. Experimental results

given rise to a rich body of knowledge and to a number
of tools, in particular petrify [60] and viptool [61].
Yet, these solutions fail in our setting: petrify aims at
maximizing concurrency while our synthesis preserves
given concurrency, viptool synthesizes nets with arc
weights, which do not map to process models.

The approach is implemented in a tool, namely
bpstruct, which is publicly available. The running
time of our structuring technique is mostly dominated
by the time required to compute proper prefixes, which
for safe systems is O((∣B∣/n)n) [50], where B is the
set of conditions of the prefix and n is the maximal
size of the presets of the transitions in the originative
system. All other steps can be accomplished in
linear time. Concerning the extension for maximal
structuring, the theoretic discussion in this article
implies exponential time and space complexities when
constructing posets (this is due to our intent to stay
close to the existing theory). However, in practice,
given an ordering relations graph one can construct
a poset which only contains information from the graph,
without introducing duplicate events, and thus stay
linear to the size of the graph. At the theoretical



Maximal Structuring of Acyclic Process Models 21

level this requires introduction of a concept of a cutoff
for posets followed by an adjustment of the theories
along subsequent transformation steps. The folding step
reverses the unfolding and, thus, in the best case can be
performed in the same time.

The fact that the running time of structuring depends
on the size of the result, allows to introduce heuristics
to terminate computation when the result gets large,
e.g., when the event duplication factor is larger than
two. Moreover, we envision a technique which can
decide on-line, i.e., during the construction of the proper
prefix, that from now on the prefix defines an ordering
relations graph which contains a primitive module and,
thus, the model cannot be structured. However, in
practice we have never observed such a need with
our implementation in most cases delivering results in
milliseconds. Note that the amount of task duplication
in the structured models is controlled by proper prefixes.
As proper prefixes are always minimal, see the discussion
in Section 5.1, the duplication introduced by our
technique is minimal.

The employed notion of behavioral equivalence, i.e.,
fully concurrent bisimulation, cares only about the
opportunity to extend equivalent runs of process models
with the same task (observable transition) possibly by
skipping several gateways (silent transitions), see [26].
Technically, this implies that our structuring algorithm
might suppress implicit decision points (an xor split
followed by another gateway) of an unstructured process
model in its structured version. To avoid an aggregation
of implicit decisions into a single decision, one can
materialize them, i.e., introduce an observable decision
task which follows the xor split. Decision tasks should be
treated as all other observable tasks during structuring.
Afterwards, they can be converted back into the decision
points in the resulting structured model.

It is worth pointing out that spurious control flow
relations in unstructured process models may forbid
their structuring. However, these relations can be
suppressed in the preprocessing step by unfolding and
then refolding the model, by following the principles
described in Sections 5 and 7. The refolded model
is (in some sense) in a canonical form and should be
employed for structuring; note that the refolded model
is sometimes well-structured. The detailed analysis of
such a preprocessing step is left for future work.

Our ongoing work aims at extending the method to
handle models with loops. In our initial investigations,
we try to derive a condition for unfolding truncation
which results in prefixes with sufficient information
to recognize all SESE loop components hidden within
process models. The first results show that such a
condition must be evaluated iteratively as complex
overlapping loop topologies keep unfolding.

REFERENCES

[1] Weske, M. (2007) Business Process Management:
Concepts, Languages, Architectures. Springer Verlag.

[2] van der Aalst, W. M. P. and Stahl, C. (2011) Modeling
Business Processes: A Petri Net-Oriented Approach.
Cambridge MA: MIT Press.

[3] Dumas, M., van der Aalst, W. M. P., and ter
Hofstede, A. H. M. (2005) Process-Aware Information
Systems: Bridging People and Software through Process
Technology. Wiley-Interscience, Hoboken, NJ.

[4] Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C.
(2000) On structured workflow modelling. Conference
on Advanced Information Systems Engineering (CAiSE),
Lecture Notes in Computer Science, 1789, pp. 431–445.
Springer.

[5] Liu, R. and Kumar, A. (2005) An analysis and
taxonomy of unstructured workflows. Business Process
Management (BPM), Lecture Notes in Computer
Science, 3649, pp. 268–284. Springer.

[6] Polyvyanyy, A., Garćıa-Bañuelos, L., and Dumas, M.
(2010) Structuring acyclic process models. Business
Process Management (BPM), Lecture Notes in
Computer Science, 6336, pp. 276–293. Springer.

[7] Business process model and notation (BPMN) version
2.0. http://www.omg.org/spec/BPMN/2.0/PDF/.

[8] Keller, G., Nüttgens, M., and Scheer, A.-W.
(1992) Semantische Prozeßmodellierung auf der
Grundlage ‘Ereignisgesteuerter Prozeßketten (EPK)’.
Veröffentlichungen des Instituts für Wirtschaftsinfor-
matik (IWi). Universität des Saarlandes. In German.

[9] Kitzmann, I., König, C., Lübke, D., and Singer, L.
(2009) A simple algorithm for automatic layout of
BPMN processes. Workshop on Advanced Issues of E-
Commerce and Web/based Information Systems (CES),
pp. 391–398. IEEE Computer Society.

[10] Effinger, P., Siebenhaller, M., and Kaufmann, M. (2009)
An interactive layout tool for BPMN. Workshop
on Advanced Issues of E-Commerce and Web/based
Information Systems (CES), pp. 399–406. IEEE
Computer Society.

[11] Laue, R. and Mendling, J. (2008) The impact of
structuredness on error probability of process models.
Information Systems Technology and its Applications
(UNISCON), Lecture Notes in Business Information
Processing, 5, pp. 585–590. Springer.

[12] Laguna, M. and Marklund, J. (2005) Business Process
Modeling, Simulation, and Design. Prentice Hall.

[13] Dumas, M., Garćıa-Bañuelos, L., Polyvyanyy, A., Yang,
Y., and Zhang, L. (2010) Aggregate quality of service
computation for composite services. International
Conference on Service Oriented Computing (ICSOC),
Lecture Notes in Computer Science, 6470, pp. 213–227.

[14] Ouyang, C., Dumas, M., ter Hofstede, A. H. M., and
van der Aalst, W. M. P. (2006) From BPMN process
models to BPEL web services. International/European
Conference on Web Services (ICWS), pp. 285–292. IEEE
Computer Society.

[15] Weidlich, M., Decker, G., Großkopf, A., and Weske,
M. (2008) BPEL to BPMN: The myth of a straight-
forward mapping. OTM Conferences, Lecture Notes in
Computer Science, 5331, pp. 265–282. Springer.



22 A. Polyvyanyy et al.

[16] Mazanek, S. and Hanus, M. (2011) Constructing a
bidirectional transformation between BPMN and BPEL
with a functional logic programming language. Journal
of Visual Languages and Computing (VLC), 22, 66–89.

[17] Weber, B., Reichert, M., Mendling, J., and Reijers, H. A.
(2011) Refactoring large process model repositories.
Computers in Industry, 62, 467–486.

[18] Dijkman, R. M., Gfeller, B., Küster, J. M., and
Völzer, H. (2011) Identifying refactoring opportunities
in process model repositories. Information & Software
Technology (INFSOF), 53, 937–948.

[19] Uba, R., Dumas, M., Garćıa-Bañuelos, L., and Rosa,
M. L. (2011) Clone detection in repositories of business
process models. Business Process Management (BPM)
Lecture Notes in Computer Science. Springer.

[20] Ferrante, J., Ottenstein, K. J., and Warren, J. D.
(1987) The program dependence graph and its use
in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 9, 319–349.

[21] (2007). Web services business process execution
language version 2.0. committee specification.
http://www.oasis-open.org/committees/download.php/
22475/wsbpel-v2.0-CS01.pdf.

[22] Reichert, M. and Dadam, P. (1998) ADEPTflex-
supporting dynamic changes of workflows without losing
control. Journal of Intelligent Information Systems
(JIIS), 10, 93–129.

[23] Rinderle, S., Reichert, M., and Dadam, P. (2004)
Flexible support of team processes by adaptive workflow
systems. Distributed and Parallel Databases (DPD), 16,
91–116.

[24] van der Aalst, W. M. P., van Dongen, B. F., Herbst,
J., Maruster, L., Schimm, G., and Weijters, A. J.
M. M. (2003) Workflow mining: A survey of issues and
approaches. Data & Knowledge Engineering (DKE),
47, 237–267.

[25] Elliger, F., Polyvyanyy, A., and Weske, M. (2010) On
separation of concurrency and conflicts in acyclic process
models. Enterprise Modelling and Information Systems
Architectures (EMISA), Lecture Notes in Informatics,
172, pp. 25–36. GI.

[26] Best, E., Devillers, R. R., Kiehn, A., and Pomello, L.
(1991) Concurrent bisimulations in Petri nets. Acta
Informatica (ACTA), 28, 231–264.

[27] Dijkstra, E. W. (1968) Letters to the editor: Go To
statement considered harmful. Communications of the
ACM (CACM), 11, 147–148.

[28] Hopkins, M. E. (1972) A case for the GOTO. ACM
Annual Conference, pp. 787–790. ACM.

[29] Wulf, W. A. (1972) A case against the GOTO. ACM
Annual Conference, pp. 791–797. ACM.

[30] Rubin, F. (1987) “GOTO considered harmful” consid-
ered harmful. Communications of the ACM (CACM),
30, 195–196.

[31] Moore, D., Musciano, C., Liebhaber, M. J., Lott,
S. F., and Starr, L. (1987) ““GOTO considered
harmful” considered harmful” considered harmful.
Communications of the ACM (CACM), 30, 351—-355.

[32] Williams, M. H. (1977) Generating structured flow
diagrams: The nature of unstructuredness. The
Computer Journal (CJ), 20, 45–50.

[33] Williams, M. H. and Ossher, H. L. (1978) Conversion
of unstructured flow diagrams to structured form. The
Computer Journal (CJ), 21, 161–167.

[34] Oulsnam, G. (1982) Unravelling unstructured programs.
The Computer Journal (CJ), 25, 379–387.

[35] Zhang, F. and D’Hollander, E. H. (2004) Using
hammock graphs to structure programs. IEEE
Transactions on Software Engineering (TSE), 30, 231–
245.

[36] Hauser, R. and Koehler, J. (2004) Compiling process
graphs into executable code. Generative Programming
and Component Engineering (GPCE), Lecture Notes in
Computer Science, 3286, pp. 317–336. Springer.

[37] Koehler, J. and Hauser, R. (2004) Untangling
unstructured cyclic flows – a solution based on
continuations. CoopIS/DOA/ODBASE, Lecture Notes
in Computer Science, 3290, pp. 121–138. Springer.

[38] Lohmann, N. and Kleine, J. (2008) Fully-automatic
translation of open workflow net models into simple
abstract BPEL processes. Modellierung, LNI, 127, pp.
57–72. GI.

[39] Hauser, R., Friess, M., Küster, J. M., and Vanhatalo,
J. (2008) An incremental approach to the analysis and
transformation of workflows using region trees. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C (TSMC), 38, 347–359.

[40] Polyvyanyy, A., Garćıa-Bañuelos, L., and Weske, M.
(2009) Unveiling hidden unstructured regions in process
models. OTM Conferences, Lecture Notes in Computer
Science, 5870, pp. 340–356. Springer.

[41] Best, E. and Shields, M. W. (1983) Some equivalence
results for free choice nets and simple nets and on the
periodicity of live free choice nets. Colloquium on Trees
in Algebra and Programming (CAAP), Lecture Notes in
Computer Science, 159, pp. 141–154. Springer.

[42] Best, E. (1987) Structure theory of Petri nets: the free
choice hiatus. Advances in Petri Nets, Lecture Notes in
Computer Science, 254, pp. 168–205. Springer.

[43] Kiepuszewski, B., ter Hofstede, A. H. M., and van der
Aalst, W. M. P. (2003) Fundamentals of control flow in
workflows. Acta Informatica (ACTA), 39, 143–209.

[44] van der Aalst, W. M. P. (1997) Verification of
workflow nets. Applications and Theory of Petri Nets
(ICATPN/APN), Lecture Notes in Computer Science,
1248, pp. 407–426. Springer.

[45] van der Aalst, W. M. P. (2000) Workflow verification:
Finding control-flow errors using Petri-net-based
techniques. Business Process Management (BPM),
Lecture Notes in Computer Science, 1806, pp. 161–183.
Springer.

[46] Engelfriet, J. (1991) Branching processes of Petri nets.
Acta Informatica (ACTA), 28, 575–591.

[47] Esparza, J. and Heljanko, K. (2008) Unfoldings – A
Partial-Order Approach to Model Checking EATCS
Monographs in Theoretical Computer Science. Springer.

[48] McMillan, K. L. (1995) A technique of state space search
based on unfolding. Formal Methods in System Design
(FMSD), 6, 45–65.

[49] Nielsen, M., Plotkin, G. D., and Winskel, G. (1981) Petri
nets, event structures and domains, Part I. Theoretical
Computer Science (TCS), 13, 85–108.



Maximal Structuring of Acyclic Process Models 23

[50] Esparza, J., Römer, S., and Vogler, W. (2002)
An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design (FMSD), 20, 285–
310.

[51] Polyvyanyy, A., Vanhatalo, J., and Völzer, H. (2010)
Simplified computation and generalization of the refined
process structure tree. Web Services and Formal
Methods (WS-FM), Lecture Notes in Computer Science,
6551, pp. 25–41. Springer.

[52] Vanhatalo, J., Völzer, H., and Koehler, J. (2009) The
refined process structure tree. Data & Knowledge
Engineering (DKE), 68, 793–818.

[53] van Hee, K. M., Sidorova, N., and Voorhoeve, M.
(2003) Soundness and separability of workflow nets in
the stepwise refinement approach. Applications and
Theory of Petri Nets (ICATPN/APN), Lecture Notes
in Computer Science, 2679, pp. 337–356. Springer.

[54] McConnell, R. M. and de Montgolfier, F. (2005)
Linear-time modular decomposition of directed graphs.
Discrete Applied Mathematics (DAM), 145, 198–209.

[55] Fahland, D. (2010) From Scenarios To Components.
PhD thesis Humboldt-Universität zu Berlin and
Technische Universiteit Eindhoven.

[56] Fahland, D., Favre, C., Koehler, J., Lohmann, N.,
Völzer, H., and Wolf, K. (2011) Analysis on demand:
Instantaneous soundness checking of industrial business
process models. Data Knowl. Eng., 70, 448–466.

[57] Verbeek, H. M. W. E. and van der Aalst, W. M. P. (2000)
Woflan 2.0: A Petri-net-based workflow diagnosis tool.
Applications and Theory of Petri Nets (ICATPN/APN),
pp. 475–484.

[58] Verbeek, H. M. W. E., Basten, T., and van der Aalst,
W. M. P. (2001) Diagnosing workflow processes using
woflan. The Computer Journal (CJ), 44, 246–279.

[59] Polyvyanyy, A., Weidlich, M., and Weske, M. (2011)
Connectivity of workflow nets: The foundations of
stepwise verification. Acta Informatica (ACTA), 48,
213–242.

[60] Cortadella, J., Kishinevsky, M., Lavagno, L., and
Yakovlev, A. (1998) Deriving Petri nets for finite
transition systems. IEEE Transactions on Computers
(TC), 47, 859–882.

[61] Bergenthum, R., Desel, J., and Mauser, S. (2009)
Comparison of different algorithms to synthesize a Petri
net from a partial language. Transactions on Petri
Nets and Other Models of Concurrency (TOPNOC), 3,
216–243.


