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Abstract. Process models define allowed process execution scenarios.
The models are usually depicted as directed graphs, with gateway nodes
regulating the control flow routing logic and with edges specifying the
execution order constraints between tasks. While arbitrarily structured
control flow patterns in process models complicate model analysis, they
also permit creativity and full expressiveness when capturing non-trivial
process scenarios. This paper gives a classification of arbitrarily structured
process models based on the hierarchical process model decomposition
technique. We identify a structural class of models consisting of block
structured patterns which, when combined, define complex execution
scenarios spanning across the individual patterns. We show that complex
behavior can be localized by examining structural relations of loops
in hidden unstructured regions of control flow. The correctness of the
behavior of process models within these regions can be validated in linear
time. These observations allow us to suggest techniques for transforming
hidden unstructured regions into block-structured ones.

Keywords: Process structure tree, process model analysis, process model
correctness, process model transformation

1 Introduction

Software engineers employ principles of conceptual modeling to encapsulate all
the information about real world entities in formal models, e.g., specification of
behavior. The research field of business process management [1] investigates the
problem of capturing behavioral aspects of real world entities in process models.
Process models are widely used to design, analyze, and improve how companies
organize operational processes. Furthermore, process models are used in the
design of distributed software systems and to provide a blueprint for systems
that realize the processes.
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Process modeling languages, e.g., BPMN [2], formalize process models as
directed graphs, where edges specify execution order constraints, task nodes
represent business activities, and gateway nodes define the control flow routing
logic of a model. Graph-based process modeling languages allow a great level of
expressiveness for business analysts capturing process scenarios in models. In order
to fulfill business goals, analysts can come up with arbitrarily structured process
models. However, the degree of freedom which analysts gain is the primary source
of errors [3,4,5]. One can easily end up with a model which encodes undesired
scenarios, e.g., ones that never reach the goal state of a process or ones that
result in the uncontrolled concurrent execution of business activities. Additionally,
process models with complex structures aggravate the computational complexity
of model analysis tasks, e.g., the task of checking the correctness of the process
model’s behavior—the (behavioral) soundness [6]. One widely accepted solution
to address identified problems is to restrict the freedom, i.e., to restrain the
structural principles of the composing models. This, however, limits the creativity
during the business process model design phase. Furthermore, the restrictions on
allowed structural patterns often result in models with replicated task nodes as
well as replicated structural patterns, which are heavily introduced in order to
capture envisioned scenarios.

In this paper, we use the SPQR-tree process model decomposition technique,
known from compiler theory [7] and introduced to the business process manage-
ment field in [8], to derive a structural classification of process models. We identify
a structural class of process models which are composed solely of block-structured
fragments. However, when these fragments are combined in a model they form
regions of unstructured process behavior. In these regions control flow can enter
and afterwards leave an individual fragment through the same node in a looping
pattern. We refer to such regions as “hidden” unstructured regions.

Hidden unstructured regions have been identified before [7,8]. They are
referred to as non-prime subprograms in [7] and as directed bond fragments
in [8]. However, we take a step forward as we provide a characterization of their
structural properties and describe a linear time method for verifying the soundness
of the underlying process model. Additionally, we show that existing flow graph
restructuring techniques can be adapted to transform hidden unstructured regions.
Restructured process models become suitable for translation to block-structured
languages such as BPEL [9,10], e.g., for execution.

The rest of the paper is organized as follows: The next section discusses the
related work. In section 3, the SPQR-tree decomposition technique is presented.
First, we exemplify the technique with the help of undirected graphs. Afterwards,
we discuss the implications of the decomposition if performed on process models.
In section 4, we present the notion of a behavioral correctness for process models.
Section 5 presents structural process model classes and discusses the identifica-
tion and behavioral analysis of hidden unstructured regions in process models.
Section 6 shows that existing techniques can be adapted to transform hidden
unstructured regions into block-structured process models. The paper closes with
ideas on future steps and conclusions that summarize our findings.
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2 Related Work

Kiepuszewski, Hofstede, and Bussler [4] identify the classes of unstructured
process graphs that can be transformed to equivalent structured versions. Their
classification relies on two parameters: the presence of parallel control flow (i.e.,
and gateways) and the presence of loops. Three categories are identified. The
first category is restricted to xor logic only and allows loops. As the underlying
logic is simple, one can use techniques developed for flowchart restructuring to
transform a model in this category to an equivalent structured form (e.g., [11]).
They also showed that restructuring can be achieved either by node duplication
or by the use of auxiliary variables, but some cases can only be restructured
with the use of the aforementioned variables. The second category comprises
acyclic models which allow internal and logic. As the authors point out, the
presence of and gateways may induce structural problems such as deadlocks or
lack of synchronization. They further analyze this category and conclude that
most unstructured models carrying internal and logic cannot be restructured
except for a subset of the models with an overlapping structure [12]. Finally, the
authors describe a category consisting of models with loops and with internal
and logic. They concluded that, in general, well-behaved cyclic process can be
restructured. But, the authors also presented a well-behaved cyclic process that
cannot be restructured that uses variables to synchronize some of the parallel
paths. An open question remains, whether there exist well-behaved arbitrary
processes without the variables that cannot be restructured.

Liu and Kumar [5] extended the work by Kiepuszewski et al. Their aim was to
identify the source of unstructuredness in process models and to investigate the
scenarios and configurations giving rise to structural conflicts. Their taxonomy
is built on top of three dimensions. First, the notion of corresponding control
elements or corresponding pair, i.e., a split and a join gateways which have at
least two distinct control flow paths going from the split gateway and reaching
the join gateway. Corresponding pairs are further classified in proper ones if both
gateways use the same logic and, otherwise, in mismatched ones. Second, the
notion of nesting of corresponding pairs. Nesting is further divided in proper and
improper, and quantified according to the number of intermediate improperly
nested gateways: first-order improper nested, if only one intermediate gateway
exists, and so on. The third parameter being considered is the presence of loops
in the process model. The authors proceed by describing families of process
models which are variations on the three dimensions. The first family corresponds
to first-order improper nested graphs. To illustrate the characteristics of this
family, they present a process model topology with four gateways and enumerate
all variants (changing the gateway logic) and identify the potential structural
conflicts. The second family corresponds to second-order improper nested graphs,
for which a similar analysis is performed. In this context the authors identify
the overlapping structure as the only sound configuration allowing mismatched
corresponding pairs. The last family analyzed is that of first-order improper
nested graphs with loops. The analysis of higher level improper nesting has been
left open.
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In this paper, we do some first steps in investigating how a process structure
tree, in particular the SPQR-tree, can be employed for the efficient analysis of
process model behavior. Similar to [4], we identify and investigate different struc-
tural process model classes. However, their focus is on restructuring suitability.
In contrast, we want to investigate the structural fragment types discovered by
the SPQR-tree decomposition. The fragments are finer-grained, and allow us to
analyze both their structural and their behavioral properties. In this way, we
identify classes of fragments for which correctness of process model behavior can
be validated in linear time. This also differs from the approach described in [5].
Their study is based on the analysis of a single case for each family of process
models with an arbitrary number of gateways, for which the set of possible
variants on gateway logic has been enumerated. However, we consider that such
approach lacks of generality. In our approach, the analysis is simplified by the fact
that the SPQR-tree decomposition by itself gives the hints about the structural
properties. We base our reasoning on this properties and derive the restrictions
to be observed by sound process models.

3 The SPQR-Tree Decomposition

This section explains the technique of structural process model decomposition.
First, the technique is exemplified by performing the decomposition of undirected
graphs. Afterwards, we discuss the implications of the decomposition technique
if performed on process models.

3.1 Graph Decomposition

The SPQR-tree decomposition is a decomposition of an undirected biconnected
multigraph aimed at identifying its triconnected fragments. A graph is k-connected
if there exists no set of k − 1 elements, each a vertex or an edge, whose removal
makes the graph disconnected. Such a set is called a separating (k − 1)-set.
Separating 1- and 2-sets of graph vertices are called cutvertices and separation
pairs. 1-, 2-, and 3-connected graphs are referred to as connected, biconnected,
and triconnected, respectively.

The algorithm for the discovery of triconnected fragments of a graph was
first proposed in [13]. Afterwards, in [7], the algorithm was applied to sequential
program parsing. It was proposed to decompose the directed program graph into
the parse tree (or the tree of the triconnected components). The parse tree is a
hierarchical representation of graph fragments induced by its split pairs, where a
split pair is either a separation pair, or a pair of adjacent vertices. The parse tree
was studied as SPQR-tree in [14,15]. [13,16,17] show the path towards a linear
time complexity algorithm implementation of the SPQR-tree decomposition. The
decomposition results in process fragments of four structural types: S-, P -, Q-,
and R-type fragments.

◦ Series case. A split pair is a pair of graph vertices giving a maximal sequence
of vertices and consists of k nodes and k edges (k ≥ 3)—the S-type fragment.
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Fig. 1. SPQR-tree decomposition of a graph

◦ Parallel case. A split pair is a pair of adjacent graph vertices in k distinct
edges (k ≥ 2)—the P -type fragment.
◦ Trivial case. A split pair is a pair of adjacent graph vertices—a fragment

consists of one edge—the Q-type fragment.
◦ Rigid case. If none of the above cases applies, a fragment is a triconnected

fragment—the R-type fragment.

Figure 1 exemplifies the SPQR-tree decomposition. Figure 1(a) shows an
undirected graph, whereas Figure 1(b) gives its SPQR-tree decomposition. The
names of SPQR-tree nodes hint at the structural types of their underlying
fragments, e.g., S1 is the series case fragment, P1 is the parallel case fragment,
and R1 is the rigid case fragment. The vivj nodes represent Q-type structural
fragments—graph edges.

Each SPQR-tree node represents a fragment skeleton, i.e., the basic structure
of a fragment and its relations with other fragments. Figures 1(c), 1(d), and 1(e)
show the fragment skeletons of the SPQR-tree from Figure 1(b). Each fragment
skeleton consists of the original graph edges (drawn with solid lines) and virtual
edges (drawn with dashed lines). Each virtual edge is shared between two fragment
skeletons and hints at a structural relation between skeletons in the SPQR-tree,
whereas each original edge is contained in one skeleton. The nodes that form
the separation pairs of the graph are highlighted with a grey background, e.g.,
nodes v1 and v4 in fragment skeleton R1. These nodes, when removed, disconnect
fragment R1 from the rest of the graph. Observe that separation pairs are only
discovered in a set of graph nodes with the number of coincident edges higher
than two. This aligns with the definition of the series case fragment. In order to
obtain a maximal sequence, any adjacent S-type fragments within the SPQR-tree
must be combined. Otherwise, one can discover a combinatorial set of separation
pairs within the series case fragments, e.g., v1v4, v1v6, and v4v5 within the S1
fragment skeleton (see Figure 1(e)). Similarly, the structural relation of a parallel
case fragment within a parallel case fragment should be recognized as a single
P -type fragment.

In order to obtain the original graph, one must “glue” all the fragment
skeletons pair-wise in any order, along the virtual edges, i.e., merge adjacent
vertices of the shared virtual edge. Once fragment skeletons are combined, the
shared virtual edge is removed.
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3.2 Process Model Decomposition

In this section, we examine fragments obtained after the SPQR-tree decomposition
of a process model. We start with the definition of a process model adopted
from [1], which is also the generalization of the definition proposed in [18]—
gateways that are both split and join are allowed in a process graph.
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Fig. 2. A process model and its SPQR-tree node fragments

Definition 1 (Process Model). A process model is a tuple P = (N,E, type),
where:

◦ N = NT ∪NG is a set of nodes, where NT is a nonempty set of tasks and
NG is a set of gateways; the sets are disjoint,
◦ E ⊆ N ×N is a set of directed edges between nodes defining control flow,
◦ type : NG → {and, xor} is a function that assigns a control flow construct to

each gateway.

Moreover, (N,E) is a connected graph—a process graph. Each task t ∈ NT

can have at most one incoming and at most one outgoing edge (|•t| ≤ 1 ∧
|t•| ≤ 1), where •t stands for a set of immediate predecessor nodes (•t =
{n ∈ N |(n, t) ∈ E}) and t• stands for a set of immediate successor nodes (t• =
{n ∈ N |(t, n) ∈ E}) of task t. A task t ∈ NT is a process entry if |•t| = 0. A task
t ∈ NT is a process exit if |t•| = 0. There is at least one process entry task and
at least one process exit task. Each gateway g ∈ NG has either more than one
incoming edge, or more than one outgoing edge. A gateway g ∈ NG is a split
if (|•g| = 1 ∧ |g•| > 1). A gateway g ∈ NG is a join if (|•g| > 1 ∧ |g•| = 1). A
gateway g ∈ NG is a mixed gateway if (|•g| > 1 ∧ |g•| > 1).

We require process models to be structurally correct, i.e., structurally sound.
Figure 2 gives an example of a structurally sound process model.

6



Definition 2 (Structural Soundness). A process model is structurally sound
if there is exactly one process entry, exactly one process exit, and each process
model node is on a path from the process entry to the process exit.

Similar to the case with graphs, one can construct an SPQR-tree of a process
graph and obtain the decomposition of a process model’s control flow edges. In
general, an SPQR-tree can be rooted to any node. However, in the context of
process models it makes sense to root the tree to the node which represents an
S-type fragment that contains a process entry and a process exit. In this case,
one obtains a structural process model hierarchy [8,18,7], i.e., a containment
hierarchy of sets of process model edges. The hierarchy shows a refinement of
structural patterns that collectively build up a process model, starting with a
top level series case fragment.

In order to properly address parts of a process model, we define a process
fragment as a connected subgraph of a process model.

Definition 3 (Process Fragment). A process fragment of a process model
P = (N,E, type) is a tuple F = (NF , EF , typeF ), where NG ⊂ N is a set of
gateways of P , which consists of a connected subgraph (NF , EF ) of the process
graph (N,E) of P and function typeF , which is a restriction of function type of
P to the set NF ∩NG.
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P2

S6S5
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S8S7

P3

S10S9

Fig. 3. SPQR-tree of the process
model from Figure 2

The fact that the SPQR-tree decomposi-
tion of a process model delivers a concrete
hierarchical containment of edges (the root
node is always fixed) allows to uniquely iden-
tify process fragments that are represented
by fragment skeletons. A process fragment
that corresponds to a certain node, or a frag-
ment skeleton, of the SPQR-tree is obtained
by gluing its fragment skeleton with all its
descendent skeletons in the SPQR-tree hier-
archy. We refer to such a process fragment as
an SPQR-tree node fragment. For instance,
the S1 fragment in Figure 3 is a series case
fragment that corresponds to the whole pro-
cess model shown in Figure 2. In general, the
SPQR-tree root fragment corresponds to the whole process model. Figure 3 shows
the SPQR-tree decomposition of the process model from Figure 2. Observe that
the Q-type fragments, i.e., the control flow edges, are not visualized for simplicity
reasons. In Figure 2, each SPQR-tree node fragment is enclosed in the region
with a dashed or dotted borderline, i.e., a fragment is formed by control flow
edges enclosed in or intersecting the region and nodes adjacent in a set of edges
that form the fragment.

In the following, we give a classification of nodes contained in a process
fragment.
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Definition 4 (Boundary, Internal, Entry, Exit nodes). A node is either a
boundary or an internal node of a process fragment F in a process model P :

◦ A node n ∈ NF is a boundary node of F if n is a process entry or a process
exit of P , or there exist edges ei ∈ EF and ej ∈ E\EF adjacent through n.
A boundary node can be a fragment entry or a fragment exit:

− A node n ∈ NF is a fragment entry if all the incoming edges of n are
outside of F (•n ⊆ N\NF ) or all the outgoing edges of n are inside of F
(n• ⊆ NF )

− A node n ∈ NF is a fragment exit if all the outgoing edges of n are
outside of F (n• ⊆ N\NF ) or all the incoming edges of n are inside of F
(•n ⊆ NF )

◦ A non-boundary node is an internal node of a process fragment.

We also employ the directed property of the process graph edges and the
definition of entry and exit nodes to recognize a special type of process fragments—
process components.

Definition 5 (Process Component). A process component of a process model
is a process fragment C = (NC , EC , typeC) with exactly two boundary nodes:
one fragment entry and one fragment exit.

This notion of a component was first introduced in [7] as a concept of a proper
subprogram. Process fragments that are not components are non-components.
The importance of process fragments with a single entry and a single exit logic
was identified in [19,8]. In [18], we showed how process components can be used
for the task of process model abstraction, i.e., the discovery of reducible process
fragments. The implication of the technique is fragmentation of structural as well
as behavioral process model analysis tasks. In [18], we proved that for a process
model which forbids mixed gateways, all SPQR-tree node fragments are process
components. The observation is captured in Theorem 1.

Theorem 1. Any SPQR-tree node fragment of a structurally sound process
model, which forbids mixed gateways, is a process component.

However, for the generalized definition of a process model (see Definition 1), it
does not necessarily hold that all SPQR-tree node fragments are components. In
the process model from Figure 2, fragments S5, L1, L2, and P2 (the corresponding
SPQR-tree nodes are highlighted with dark grey background in Figure 3) are
non-components. For each of the fragments, one of the boundary nodes is neither
an entry, nor an exit. In Figure 2, non-components are enclosed in the regions
with a dashed borderline, whereas components are enclosed in the regions with a
dotted borderline.

In the following part of the paper, we will investigate the structural particu-
larities of the parallel case process fragments, which are non-components, and
their influence on the behavioral analysis of process models.
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4 Correctness of Process Models

Section 3 stated a structural requirement of a process model correctness—
structural soundness. In this section, we discuss the correctness property relevant
to the dynamics of processes—(behavioral) soundness.
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Fig. 4. Mapping process models to
Petri nets

Before one can judge the correctness
of process behavior, the execution se-
mantics of process models has to be spec-
ified. We specify execution semantics of
process models by proposing a mapping
to Petri nets [20]. The mapping proce-
dure is adopted from [21] and is visu-
alized in Figure 4. Figure 4(a) shows
all possible patterns of a process model
edge that connects tasks or gateways
of either xor type or and type. During
the mapping procedure, each process
model edge is mapped onto the corre-
sponding Petri net pattern proposed in
Figure 4(b). In addition to the mapping
rules proposed in Figure 4, one has to
add a source place i which enables a
transition corresponding to the process
entry, and a sink place o which is the
only output place of the transition corresponding to the process exit. Similar
to [21], we name the described mapping—the petrify mapping. The result of the
petrify mapping is a workflow net [6]. Also, similar to [21], one can show that the
mapping of a process model onto a Petri net results in a free choice Petri net [22].
Places with multiple outgoing arcs can only result when mapping process model
edges that have a common xor type gateway as a source node. However, each of
these outgoing arcs always has only one transition as a target; this transition
models the choice decision.

The mapping specifies execution semantics of process models as follows: A
xor split forwards control flow along one of the outgoing edges. A xor join merges
multiple alternative threads of control flow without synchronization. An and
split concurrently forwards control flow along all the outgoing edges. An and join
synchronizes multiple alternative threads of control flow. A mixed gateway first
behaves as a join and then as a split of the corresponding gateway type.

At this point, we are ready to define the (behavioral) soundness property of
a process model.

Definition 6 (Soundness). A process model is sound if the petrify mapping
of the process model results in a sound workflow net.

Wil van der Aalst showed in [6] how the soundness property of workflow nets
relates to the properties of liveness and boundedness, i.e., a workflow net is sound
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Fig. 5. A workflow net, the petrify mapping of the process model from Figure 2

if and only if the extended net is live and bounded, where the extended net is
obtained by adding an extra transition t∗ to the workflow net which connects
the sink place o with the source place i. Liveness and boundedness of free choice
Petri nets can be checked in polynomial time [22]. Therefore, the soundness of
free choice Petri nets as well as the soundness of process models can be validated
in polynomial time.

Alternatively, the soundness property of a process model can be deduced from
the absence of structural conflicts in the process model.

Theorem 2. If a workflow net is a result of the petrify mapping of a process
model which is free of dead-locks and free of lack of synchronization, it is sound.

Taking into consideration that any workflow graph obtained as a mapping of
a process model is a free choice Petri net, the proof of Theorem 2 is analogous to
the proof of Theorem 2 in [21].

Figure 5 shows a workflow net, which is the result of the petrify mapping
of the process model from Figure 2. The workflow net is sound; the soundness
can be validated in polynomial time. Therefore, according to Definition 6, the
process model from Figure 2 is sound.

5 Hidden Unstructured Regions in Process Models

In this section, we identify regions in process models that hide unstructured
process logic and discuss structural constraints of these regions implied by model
correctness properties. We start the discourse by identifying structural classes of
process models based on the SPQR-tree decomposition for which soundness can
be decided in linear time. One can define structural process model classes based
on the presence or absence of certain structural case fragments in process models
and the notion of a process component. For instance:

Definition 7 (Block-structured Process Model). A process model is block-
structured if the SPQR-tree decomposition of the process graph contains no
R-type fragments and all SPQR-tree node fragments are process components.
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In the general case, SPQR-tree node fragments can also be non-components:

Definition 8 (Quasi Block-structured Process Model). A process model
is quasi block-structured if the SPQR-tree decomposition of the process graph
contains no R-type fragments.

To conclude, a process model is graph-structured if the SPQR-tree decomposi-
tion of the process graph contains at least one R-type fragment. In the following,
we examine in detail the block-structured classes of process models. Before we
continue with the discussion, we identify loop case fragments which are the special
types of parallel case fragments.

Definition 9 (Directed Fragment). An SPQR-tree node fragment is directed
if one of its boundary nodes has only outgoing incident edges among fragment
edges, and the other has only incoming incident edges among fragment edges.

The directed property assures that once control flow enters the fragment,
it does not reach the fragment entry before the fragment exit. Also, if control
flow reaches the fragment exit it passes control outside the fragment. Process
fragments that are not directed are non-directed fragments. Fragment S3 from
Figure 2 is directed, whereas fragment S5 is not. A directed process fragment is
clearly a process component.

Process components are useful for behavioral analysis. One can expect that
once control flow enters a component through the fragment entry, it also leaves
the component through the fragment exit exactly once. This observation was
developed in [18] to propose the process model abstraction technique which
aggregates process fragments, per process component base, into tasks of a higher
abstraction level. Therefore, if one is assured of the correctness of a process
component, the component can be seen as a Q-type fragment which passes
control flow from its entry to its exit.

Definition 10 (Loop Case Fragment). An L-type (or loop case) fragment
is a parallel case fragment for which: (i) the entry of the fragment is also the
exit for at least one of its child fragments, and (ii) each child skeleton specifies a
directed SPQR-tree node fragment.

Fragment L2 in Figure 2 is an L-type fragment. L2 contains two directed
fragments S7 and S8 and the entry of L2 is the exit of S8; there exists a cyclic
path that goes through the boundary nodes of L2. Contrary, fragment P2 in
Figure 2 is a P -type fragment, but not an L-type fragment; P2 contains a
non-directed fragment S5.

It is a straightforward task to check whether a block-structured process model
is sound. One must check if the gateway types of the boundary nodes for each
P -type fragment which is also a component match, meaning both gateways are
either of xor type or of and type. To ensure the soundness of a block-structured
process model, any L-type component of the process model must be structured
by boundary gateways of xor type. If the fragment entry of an L-type component
is an and type gateway, there is a dead-lock situation, while if the fragment exit
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Fig. 6. All unique combinations for edge separation on internal and external
fragment edges for a boundary node of a fragment which is a mixed gateway

of an L-type component is an and type gateway, there is a live-lock situation.
This also implies a lack of synchronization at the fragment exit. We summarize
the conditions in the following theorem:

Theorem 3. A block-structured process model is sound if and only if:

◦ for each P -type component the boundary gateways match in type,
◦ for each L-type component the boundary gateways have xor type.

In the case of a quasi block-structured process model, it is not obvious
what checks should be applied to non-components in order to validate the
soundness of the process model. To address the challenge, we investigate structural
particularities of non-components. The first characteristic of non-components
follows from Theorem 1:

Corollary 1. If an SPQR-tree node fragment of a process model is a non-
component, then at least one of its boundary nodes is a mixed gateway.

By examining the structure of a boundary fragment node which is a mixed
gateway, one can make a stronger statement, which is captured in Lemma 1.

Lemma 1. An SPQR-tree node fragment is a non-component if and only if it
has a boundary node that is a mixed gateway that has at least one incoming and
at least one outgoing edge both among internal and external fragment edges.

Proof. Figure 6 shows combinations of incident edge settings with a boundary
node which is a mixed gateway. The dashed lines divide the edges onto internal
and external fragment edges. The combinations are obtained by allowing only
incoming, only outgoing, or both incoming and outgoing edges at each side of
a dashed line. Each combination represents a collection of edge settings, where
every edge stands for an arbitrary number of edges (but at least one) that have
the same structural relation (incoming or outgoing, internal or external) with
the boundary node. Out of the total of nine possible combinations, two interfere
with the requirement of structural soundness: all incident edges are incoming
or all incident edges are outgoing. Moreover, such nodes are not even gateways.
Three combinations are the mirror copies of patterns shown in Figures 6(a), 6(b),
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and 6(c). Hence, the four unique combinations are visualized in Figure 6. Observe
that out of all possible edge settings, only the one given in Figure 6(d) allows
paths in both directions across the fragment’s boundary and, therefore, is neither
an entry nor an exit of the fragment (see Definition 4). Finally, any other edge
setting allows paths only in one direction and, hence, a node is either an entry or
an exit of the fragment (see Definition 4). ut

A fragment with at least one boundary node like the node from Figure 6(d)
is a non-directed fragment. For quasi block-structured process models there is a
strong relation between directed fragments and L-type fragments.

Lemma 2. An SPQR-tree node fragment of a quasi block-structured process
model is a non-directed fragment if and only if it is an L-type fragment or it
contains an L-type fragment that shares a boundary node with it.

Proof. A non-directed fragment contains incoming and outgoing incident edges
with one of its boundary nodes. In a quasi block-structured process model this
node is the boundary node of some P -type fragment. The P -type fragment must
have Q-type and/or S-type fragments as child fragments (see [15,18]). Every
Q-type fragment is directed. If all the S-type fragments which are the children
of the P -type fragment are directed, then the fragment is an L-type fragment. If
there exists an S-type fragment which is a non-directed fragment, then it must
share a boundary node with a P -type fragment. Hence, the above described
logic can be recursively applied to this P -type fragment. Eventually, we will
reach an L-type fragment which also shares a boundary node with the initially
investigated non-directed fragment. Therefore, if a fragment is a non-directed
fragment, then it is either an L-type fragment or it contains an L-type fragment
that shares a boundary node with it.

The reverse direction of the proposition is trivial to show. At least one of the
boundary nodes of the SPQR-tree node fragment is incident with incoming and
outgoing edges contained in the fragment. This node is also the boundary node
of the L-type fragment. Hence, the fragment is a non-directed fragment. ut

Finally, we are ready to make the concluding statement which characterizes
the nature of non-components in quasi block-structured process models.

Lemma 3. If an SPQR-tree node fragment of a quasi block-structured process
model is a non-component, then either it is an L-type fragment, or it shares a
boundary node with an L-type fragment.

Proof. If an SPQR-tree node fragment of a quasi block-structured process model
is a non-component, then it has a boundary node which is a mixed gateway that
has incoming and outgoing edges among internal and external fragment edges
(Lemma 1). Every fragment with a boundary node as in Figure 6(d) is clearly a
non-directed fragment. In a quasi block-structured process model, a non-directed
fragment is an L-type fragment or it contains an L-type fragment that shares a
boundary node with it (Lemma 2). ut
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The fact that each non-component of a quasi block-structured process model
shares a node with an L-type fragment allows us to define criteria for checking
the soundness of a quasi block-structured process model.

Theorem 4. A quasi block-structured process model is sound if and only if:

◦ for each P -type component the boundary gateways match in type,
◦ for each L-type component the boundary gateways have xor type,
◦ for each non-component the boundary gateways have xor type.

Proof. In addition to the criteria proposed in Theorem 3, one needs to show
that non-components cause structural conflicts, either a dead-lock, or a lack of
synchronization, when they have a boundary node of the and type. Every non-
component is either an L-type fragment, or it shares a boundary node with an
L-type fragment (Lemma 3). Moreover, a boundary node of the non-component
which is neither its entry nor its exit is a boundary node of an L-type fragment
contained in the non-component and has incoming and outgoing incident edges
outside the non-component. If this node is an and type gateway, it introduces
the uncontrolled concurrency (a lack of synchronization) conflict to the process
model. If the process model is mapped to the workflow net using the function
petrify, one can always observe an unbounded place, which is an output place of
the transition that corresponds to the and type gateway of the L-type fragment
and is on a path that leads outside of the fragment. ut

Theorems 3 and 4 conclude that the soundness of quasi block-structured
process models can be checked in linear time. The SPQR-tree of a process graph
can be constructed in linear time [17]. The directed property of a fragment as well
as an L-type fragment structure can be checked locally. Finally, model soundness
can be checked by performing a post-order traversal to the SPQR-tree of the
process graph while verifying if the structural constraints defined in Theorem 4
hold for every fragment.

6 Transformation of Hidden Unstructured Regions
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Fig. 7. Splitting conflicting gateways on
the running example process

The problem of program control
flow graph restructuring has largely
attracted the attention of the compiler
construction research community. In
contrast to flow-graphs, process mod-
els can be structured with advanced
constructs such as and type gateways
that may preclude the use of those gen-
eral approaches. However, our focus is
on non-component fragments which,
according to Theorem 4, have xor type gateways as boundary nodes. This
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Fig. 8. The restructured process model for the process model from Figure 2 and
its mapping to BPEL

fact allows us to conclude that there exist techniques that can be applied for
transforming quasi block-structured models into block-structured ones.

Please note that restructuring techniques do not consider mixed gateways.
Hence, prior to applying a restructuring, conflicting mixed gateways must be
split as follows: A first gateway is used for collecting all incoming edges, whereas
a second one is used for collecting outgoing edges. Finally, an edge is added
to connect the first gateway with the other one. To illustrate this procedure,
consider Figure 7, which presents fragment S2 in the running example after
splitting the two conflicting gateways (i.e., shaded gateways). S2 corresponds to
the non-component fragment highlighted in the SPQR-tree in Figure 3.

Splitting conflicting gateways unveils the unstructured logic which is hidden
by non-component fragments. For instance, a closer look at Figure 7 allows us to
identify two unstructured loops, one with two entry points (left-hand side) and
the other with two exit points. It is worth noting that the resulting region would
be enclosed in a R-type fragment if the corresponding SPQR-tree was updated.

Figure 8 presents the restructured process model of the running example
(the transformation was done using the technique proposed in [11]). Please note
that some nodes have been replicated, i.e., tasks with dark grey background. In
general, restructuring methods rely on node replication and/or on encoding the
control flow via additional variables and gateways. The translation of the resulting
process model to a block-structured language is straightforward (see [8]). Although
the process model still contains mixed gateways, the SPQR-tree decomposition
provides enough structural information to support the translation. To illustrate
this, Figure 8 presents the mapping of the control flow of the running example
to BPEL constructs.

15



7 Conclusions

In this paper, we describe a structural classification for process models based
on the SPQR-tree decomposition. Three classes are identified: block-structured,
quasi block-structured, and graph-structured process models. We focus on quasi
block-structured models which contain regions with hidden unstructured behavior.
Although this kind of regions was described before [7,8], we take a step forward
as we characterize their structural properties and show that their soundness can
be verified in linear time. We also show that existing techniques for flow-graph
restructuring can be applied to transform hidden unstructured regions into block-
structured equivalent process fragments. It is worth noting that in the cases where
a quasi block-structured process graph contains and type gateways, all of them
are part of block-structured fragments. As a consequence, hidden unstructured
fragments rely only on xor logic, which enables the use of restructuring techniques.
The evoked transformation may be required if a quasi block-structured process
model must be translated into a block-structured language such as BPEL, e.g.,
for execution.

In the future work, we want to extend our approach to address the analysis
and transformation of unstructured process models, i.e., process models whose
SPQR-tree decomposition contains R-type fragments. We believe that the struc-
tural constraints imposed by L-type fragments to their enclosing regions can
be exploited to speed up the verification of unstructured process models, for
instance, if R-type fragments contain internal loops. We are also interested in
further investigating the analysis and the transformation of process models which
use or type gateways.
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